滑动球铰支座栓接
【滑动球铰支座】栓接:铆接形式,在建筑工程中,现已很少采用,通常螺栓抗剪性能差,可在次要结构部位使用,高强螺栓,使用日益广泛,常用8.8s和1 0.9s两个强度等级,根据受力特点分承压型和摩擦型。两者计算方法不同,高强螺栓规格m12,常用m16~m30,超大规格的螺栓性能不稳定,设计中应慎重使用。自攻螺丝用于板材与薄壁型钢间的次要连接。国外在低层墙板式住宅中,也常用于主结构间的连接。
【滑动球铰支座】我国测力支座开发研究
20世纪90年代,我国铁建所,在多年盆式支座研究经验的基础上,参考国内外有关资料,针对测力支座【滑动球铰支座】的基本要求,结合铁路特定桥梁的应用要求,利用钢盆中橡胶承压板受压时各向同性、橡胶各部分压力均匀、正压力与橡胶对盆环侧压力基本相同的特点,采用在橡胶承压板中设油腔,利用油压来测定支座反力,完成我国盆式橡胶测力支座的研究开发,并直接应用到实桥中,取得了较好的效果。盆式橡胶测力支座,不但适用于铁路桥梁,也同样适用于公路和市政桥梁工程。
滑动球铰支座设计图
【滑动球铰支座】盆式橡胶测力支座的研究,成功地解决了橡胶承压板内油腔的成型方法、支座测力油路系统设计和测力支座的公章性能及测试方法。
技术数据、材料选用及材质要求、设计要求(包括制造和安装、焊缝质量检验的等级、涂装及运输等)、结构布置、构件截面选用以及结构的主要节点构造等均应表示清楚,以利于施工详图的顺利编制,并能正确体现设计的意图。主要材料应列表表示。
1993年7月2日至18日,【滑动球铰支座】对主梁合龙后预应力束张拉过程中的端支点反力变化情况进行了测试,结构证明支座工作处于良好状态。而且支点反力的变化过程也与理论计算的反力变化过程向一致,说明盆式橡胶测力支座性能稳定,起到了检测主梁张拉预应力束起的次反力变化的作用,也反映出施工满足设计要求,达到了预期目的。该桥端支点反力的实测值与理论计算值极为接近。
【滑动球铰支座】
在国外提出了具有与测力支座同样性能的另类支座,这类支座是一种可用于收集基本特性资料的“智能”【滑动球铰支座】。支座失效或损伤严重以及因此而产生的***应力是桥梁***的常见原因,这是桥梁要求的一项维护检查内容。智能桥梁支座可以监测和诊断通梁结构系统传递到支座的活载及恒载。智能桥梁支座是根据如果桥梁结构构件的刚度由于断裂、冲击或其他原因而出现明显的变化,很可能分配到支座上的荷载就会发生变化的原理,也就是说,智能桥梁支座可以检测到桥梁的损伤聚程度。
抗震滑动球铰支座在抗震中介绍
【抗震滑动球铰支座】城市中建筑物的类型是多种多样的,主要反映在超高层、高层、多层和轻重型建筑之分,而这些不同类型的建筑,又以基础深度的差别体现在冲击波的大小上,基础越深、越大,受冲击波的冲击自然很大,在加上城市地下建筑设施不少(如:地下建筑、地铁、地下大型管道等),都是构成城市场地效应发生互相变化的种种直接因素。现行抗震设计中,都没有考虑地下建筑设施的自身抗震,以及对地面建筑物基础和地基的场地效应所产生的严重问题。
【抗震滑动球铰支座】现行建筑结构抗震桩基设计与场地效应的严重问题现行抗震设计中的桩基础的设计有两种类型,一种是端承桩类型,另一种是摩擦桩类型。端承桩是将深层的地基反作用力通过桩传递给地面,构成对上部建筑物作用力(压力)的平衡。摩擦桩是通过桩基础与一定深度的地基土层十分紧密的挤压结合中产生足够的反作用力,通过桩传递到地面,构成对上部建筑物的作用力(压力)的平衡。这里必须指出的是,这两种类型的桩基础在对上部建筑物的作用力(压力)构成平衡的充分条件是:静力荷载,即在没有外力的作用下成立的。
【抗震滑动球铰支座】球型支座是在盆式橡胶支座的基础上发展起来的一种新型桥梁支座。随着桥梁技术的发展,大量的弯桥和宽桥的出现,70年代初国外就研制成球型支座,它的设计转角可远大于盆式橡胶支座,一般为0.01~0.01rad,必要时也可以达到0.05rad。设计反力从1MN~30MN。
版权所有©2025 产品网