{珩磨管}{绗磨管}{油缸管}{油缸筒}{滚压管}{油缸缸筒}{油缸缸管}{液压油缸筒}{油缸珩磨管}{油缸绗磨管}{研磨管}{油缸钢管}
{珩磨管}{绗磨管}{油缸管}{油缸筒}{滚压管}{油缸缸筒}{油缸缸管}{液压油缸筒}{油缸珩磨管}{油缸绗磨管}{研磨管}{油缸钢管}加工精度高:特别是一些中小型的通孔,其圆柱度可达 0.001mm
以内。一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。对于大孔(孔径在200mm以上),圆度也可达
0.005mm,如果没有环槽或径向孔等,直线度达到0.01mm/1m以内也是有可能的。珩磨比磨削加工精度高,因为磨削时支撑砂轮的轴承位于被珩孔之
外,会产生偏差,特别是小孔加工,磨削精度更差。珩磨一般只能提高被加工件的形状精度,要想提高零件的位置精度,需要采取一些必要的措施。如用面板改善零
件端面与轴线的垂直度(面板安装在冲程托架上,调整使它与旋转主轴垂直,零件靠在面板上加工即可)。
表面质量好:表面为交叉网纹,
有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使
用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热
损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。
通过滚压成型,珩磨管的滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了珩磨管内壁的耐磨性,同时避免了因磨削引起的。滚压后,管材的表面粗糙度值的减小,可提高配合性质。其实滚压加工是一种无切屑加工,在常温下利用金属的塑性变形,使工件表面的微观不平度辗平从而达到改变表层结构、机械特性、形状和尺寸的目的。深孔珩磨机的珩磨工艺是利用珩磨鸡头上的油石涨开,使油石压向工件孔壁,同时,珩磨头进行旋转和往复运动,零件不动,或者珩磨头做旋转运动,工件往复运动,这两种相互运动实现珩磨。因此这种方法可同时达到光整加工及强化两种目的,是磨削无法做到的,能对珩磨管的成型产生积极作用。
{珩磨管}{绗磨管}{油缸管}{油缸筒}{滚压管}{油缸缸筒}{油缸缸管}{液压油缸筒}{油缸珩磨管}{油缸绗磨管}{研磨管}{油缸钢管}支承衬套和装配间隙对珩磨缸筒的重要性
支承衬套镶在导向套内径凹槽处,对活塞杆起导向及支承作用,其内径与活塞杆外径的合理设计间隙为0.08-0.16mm。小于0.08mm时,活塞杆运动阻力大,油缸发颤,支承衬套磨损加快,严重时伴有异响,失去支承作用;在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,而且变形层很薄,从而可获得较高的表面质量。间隙大于0.16mm时,则易与活塞杆发生偏磨,衬套单边受力,导致珩磨缸筒泄漏,活塞杆带油。
支承衬套外径与珩磨缸筒内径接触,合理设计间隙为0.1-0.19mm。小于0.1mm时,活塞杆运动阻力增加,不能保持匀速运动。衬套起不到支承作用,活塞杆上的挡板或活塞外缘易划伤缸筒内壁,严重时导致缸筒报废。 可见,装配间隙对珩磨缸筒质量重要。
版权所有©2025 产品网