光伏电池及其特性
光伏电池( PV cell )主要功能是将太阳的光能转换成电能,当前是以硅材料为基地的硅太阳能电池,包括单晶硅、多晶硅、非晶硅 、多元化合物电池 。在效率和 寿命 方面单晶硅和多晶硅优于非晶硅,多晶硅比单晶硅转换效率低,但多晶硅价格便宜 。 晶体磕太阳电池、薄膜太阳电池、硅异质结 (HIT) 太阳电池 等 。光伏组件是由多个太阳能电池组合而成,根据实际的功率需求,电压等级由光伏电池 串联 实现, 电流输出由光伏电池并联实现,光伏阵列是根据电站规模的大小有若干个光伏组件构成。
B :光伏电池特性包括光电特性和光化学特性,光化学特性还在萌芽阶段,暂不学习。 太阳能电池工作是基于光电效应原理下, 如下图所示: A 是 N 型硅, B 是 P 型硅,当材料接触的时候生成一个内部电势,使得电子只能从 B 区到 A 区,当太阳光照射到光伏电池板时,光子带有足够的能量使得电子脱离形成空穴或者说是电子 — 空穴对现, 此时内部电势会将光子释放的电子送到 A 区,空穴送到 B 区,打破了开始的平衡, A 区的电子越来越多,当在 PN 结外部接上回路,就能够形成电流。 实际上只是电子在移动,这个也取决于半导体材料的特性,半导体材料禁带较窄,电子只需要较小的能量即可脱离束缚,留下空穴,这样使得周围的电子区填补空穴,形成电流。 (注释:来源于物理学,赫兹发现,爱因斯坦正确解释,某些物质在光照的情况下可以生成电子)
光伏系统中的几个主要部件:
1. 光伏组件方阵: 由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。
2. 蓄电池: 将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。
3. 控制器: 它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如 AES 公司的 SPP 和 ***D 系列的控制器就集成了上述三种功能。
4. 逆变器: 在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。
太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。
太阳能电池应用的理论基础
太阳能电池发电原理:利用光伏发电,即通过一对有光响应的器件将光能转换成电能。太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器等主要部件组成,其中的核心元件是光伏电池组和控制器。
各部件在系统中的作用。光伏电池:光电转换。太阳能电池主要由晶硅材料做作成类似二极管中的 P-N 结,工作原理与二极管类似。在二极管中,推动 P-N 结空穴和电子运动的是外部电场,而在太阳能电池中推动 P-N 结空穴和电子运动的是太阳光子和光辐射热。也就是通常所说的光电伏应原理。
控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,而我国目前使用的大都是设计较简单的控制器,其中智能型控制器仅用于通信系统和较大型的光伏电站。
版权所有©2025 产品网