将组件送入固化烘道内进行固化。
固化过程
根据 EVA 种类的不同设置温度值: 3# 固化炉温度设置: 135 ℃ ~140 ℃(适用于福斯特公司提供的 EVA ); 142 ℃ ~148 ℃(适用于 SHARP 公司 OEM 组件所使用的 EVA );计算每天总的耗电量,一般家庭每天用电应该在5度到10度的样子。 152 ℃ ~160 ℃(适用于普利斯通公司提供的 EVA )。 4# 固化炉温度设置: 143 ℃ ~148 ℃(适用于福斯特公司提供的 EVA ); 150 ℃ ~158 ℃ (适用于 SHARP 公司 OEM 组件所使用的 EVA ); 160 ℃ ~168 ℃ (适用于普利斯通公司提供的 EVA )。 将组件依次放在车架上,关闭固化烘道的加热和通风开关,开启烘道门,把车架升上行走齿轮,待组件进入固化室就位后,降下行走齿轮,开启转盘,开始固化。固化结束后,上升行走齿轮,将车架送出固化烘道。整个过程的时间控制,可通过观察控制面板显示的实际温度值来掌握。一般是等炉温到达设定值后约 10 分钟,即可出炉。
在大多数应用中,理想情况是尽可能从太阳能电池获得电力。由于输出功率是输出电压与电流的乘积,因此我们应明确电池哪部分工作区能实现输出电压与电流乘积值,即所谓的功率点 (MPP) 。在一种极端情况下,输出电压为值 (VOC) ,但输出电流为零;在另一种极端情况下,输出电流为值 (ISC) ,但输出电压为零。在上述两种情况下,输出电压与电流的乘积均为零,因此, MPP 必须在两种极端情况之间。如给 6V 蓄电池充电必须用 8-9V 太阳能电池,给 12V 蓄电池充电必须用 15-18V 太阳能电池。
我们可以很容易地证明(或通过实验观察到),不管在何种应用, MPP 实际上总会出现在太阳能电池输出特的转弯处(见图 3 )。实践中的问题在于,太阳能电池 MPP 的确切位置会随着光照和环境温度的变化而变化,因此,为了尽可能利用太阳能,系统设计时必须在实际工作条件下实现或接近 MPP 。组件设计按国际电工GB/T9535-98和IEC61215标准,电池片符合GBT6495标准要求进行设计,采用36片或72片多晶硅太阳能电池进行串联以形成12V和24V各种类型的组件。
材料和寿命
当前,晶体硅材料(包括多晶硅和单晶硅)是的光伏材料,其市场占有率在 90% 以上 , 而且在今后相当长的一段时期也依然是太阳能电池的主流材料。多晶硅材料的生产技术长期以来掌握在美、日、德等 3 个*** 7 个公司的 10 家工厂手中,形成技术、市场垄断的状况。多晶硅的需求主要来自于半导体和太阳能电池。按纯度要求不同,分为电子级和太阳能级。其中,用于电子级多晶硅占 55% 左右,太阳能级多晶硅占 45% ,随着光伏产业的迅猛发展,太阳能电池对多晶硅需求量的增长速度高于半导体多晶硅的发展,预计到 2008 年太阳能多晶硅的需求量将超过电子级多晶硅。 1994 年全世界太阳能电池的总产量只有 69MW ,而 2004 年就接近 1200MW ,在短短的 10 年里就增长了 17 倍。接线盒安装:将接线盒粘接于产品图纸设计位置,引线从四个矩形孔引出,要求硅胶在接线盒四周适当溢出。预测太阳能光伏产业在二十一世纪前半期将超过成为的基础能源之一。
版权所有©2025 产品网