光纤光谱仪
1666 年,英国物理学家牛顿将太阳光通过圆孔射到置于暗室中的三棱镜上,太阳光通过三棱镜分解为红、橙、黄、绿、青、蓝、紫等七种彩色圆象。他在另一个实验中把分离的彩色圆象再通过同样的三棱镜,将它又重新组合成“白光”。牛顿的这个实验建立了光谱学的实验基础。制冷光谱仪
1802 年沃拉斯顿利用狭缝代替了牛顿分光装置中的圆孔,使光谱仪器的分辨率急速提高。1859 年克希霍夫和本生为了研究金属的光谱,自己设计和制造了一种完善的分光装置,是世界上首台实用的光谱仪器。从牛顿到克希霍夫和本生共经历了将近两百年的时间,逐渐形成了现代光谱仪器的基础。制冷光谱仪
紫外真空光谱仪器的工作波长范围为6-200nm。由于大气对波长以下的光有着强烈的吸收,所以此类仪器要抽真空,并且仪器内各元件在该波段范围内要有良好的光学效率。真空紫外光谱仪器主要是用来研究真空紫外光谱区的原子光谱和分子光谱。制冷光谱仪
任何原子在真空紫外光谱区都具有自己的光谱区,尤其是多电离原子的光谱绝大多数是处于真空紫外光谱区的,利用真空紫外光谱仪器可以研究高达十八次电离原子的光谱。制冷光谱仪
同时真空紫外光谱仪器还可以测定真空紫外光谱区的波长,标定各种物质发射光谱或吸收光谱的波长。此外由于各种星云的发射光谱是由温度很高的星体发出的,它们处于远紫外区,所以其在天理学的研究中也有着广泛的应用。制冷光谱仪
光谱仪的视场与其他光学仪器的视场不同,而且准直镜与物镜的工作条件也不相同,通过准直镜的光束是没有发生色散的光束,进入物镜的光束是成扇形排列的单色光束。所以,物镜的口径比准直镜大,工作条件更为复杂。制冷光谱仪
参与成像的光束宽度与光纤光谱仪的分辨率有密切关系,通常,在设计光谱仪之前,系统的物方孔径角己经确定,一般是采用一个圆丸金属片放在光路中间,这个限制参与光束宽度的金属片称为孔径光阑。光瞳就是孔径光阑的像,光瞳分为入射光瞳和出射光瞳,孔径光闲经过前面系统形成的像称为入瞳,孔径光经过后面光学系统所称的像称为出瞳。相对孔径是镜头有效孔径与焦距的比值。角放大率越大,相对孔径越小。制冷光谱仪
版权所有©2024 产品网