步进电机的PID控制
PID 控制作为一种简单而实用的控制方法 , 在步进电机驱动中获得了广泛的应用。它根据给定值 r( t) 与实际输出值 c(t) 构成控制偏差 e( t) , 将偏差的比例 、积分和微分通过线性组合构成控制量 ,对被控对象进行控制 。文献将集成位置传感器用于二相混合式步进电机中 ,以位置检测器和矢量控制为基础 ,设计出了一个可自动调节的 PI 速度控制器 ,此控制器在变工况的条件下能提供令人满意的瞬态特性 。文献根据步进电机的数学模型 ,设计了步进电机的 PID 控制系统 ,采用 PID 控制算法得到控制量 ,从而控制电机向规***置运动 。通过验证了该控制具有较好的动态响应特性 。当对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。采用 PID 控制器具有结构简单 、鲁棒性强 、可靠性高等优点 ,但是它无法有效应对系统中的不确定信息 。
目前 , PID 控制更多的是与其他控制策略相结合 , 形成带有智能的新型复合控制 。这种智能复合型控制具有自学习 、自适应 、自***的能力 ,能够自动辨识被控过程参数 , 自动整定控制参数 , 适应被控过程参数的变化 ,同时又具有常规 PID 控制器的特点。
步进电机为何一定要搭配驱动器呢?
步进电机驱动器是驱动步进电机运行的功率放大器,它能接收控制器(PLC/单片机等)发送来的控制信号并控制步进电机转过相应的角度/步数。
步进电机很常见的控制信号是脉冲信号,步进驱动器接收到一个有效脉冲就控制步进电机运行一步。具有细分功能的步进驱动器可以改变步进电机的固有步距角,达到更大的控制精度、降低振动及提高输出转矩;除了脉冲信号,具有总线通信功能的步进驱动器还能接收总线信号控制步进电机进行相应的动作。 步进电机驱动器可分为两部分一部分是环形分配器,另一部分是功率放大器。 环形分配器:要是接收3种信号分别为:脉冲信号,方向信号,脱机信号。然后再对脉冲信号进行分配,去控制功率放大器相应的晶体管导通,然后使步进电机的线圈得电。从这里我们可以看出,步进电机要运转那么必须要输入脉冲,如果没有脉冲,步进电机是不动的,所以我们需要一个驱动器来给步进电机的各项绕组依次通电。这些缺点使步进电机只能应用在一些要求较低的场合,对要求较高的场合,只能采取闭环控制,增加了系统的复杂性,这些缺点严重限制了步进电机作为优良的开环控制组件的有效利用。 方向信号:要控制AB通电的相序,A-B顺时针,B-A逆时针; 脱机信号:步进电机停止时,AB线圈有一相得电,得电的功能使转子锁住,使转子不能动,需要收去拨动转子的时候,需要给脱机信号,使AB相绕组完全断电,转子处于自由转动状态。
步进电机
智能家居给人的感觉是一种高大上,可能很难和步进电机联系起来,但是许多只能家居中,确实有很多地方应用到了步进电机,尤其是双极性的步进电机,更是解决了传统步进电机噪音大的缺点。
步进电机作为关键的机械控制部件,在各家电中起着举足轻重的作用,智能家居的崛起自然带动起步进电机的市场;而智能家居要求家电组网,通过物联网把各类电子设备相联,实现高度网络化,这同时对步进电机的各项性能提出了更苛刻的要求。
如今随着技术的进步和双极性步进电机诞生,传统步进电机低速振动噪声的问题得到了解决,而且双极性步进电机在运行和静止时都确保***的准确,运行性能也得到了极大的改善。更安静的环境、更可靠的性能,这会是打造智能家居无疑是一大福音。双极性步进电机的出现为微电机打开新天地的同时也在考验各大产商对双极性步进电机的熟悉程度,及时了解双极性步进电机的相关常识,对于用户在使用过程中,能够减少机器出现故障次数、增加机器的使用寿命。步进电机加减速过程控制技术正因为步进电机的广泛应用,对步进电机的控制的研究也越来越多,在启动或加速时如果步进脉冲变化太快,转子由于惯性而跟随不上电信号的变化,产生堵转或失步在停止或减速时由于同样原因则可能产生超步。
随着社会的发展进步,人工智能设备将应用的更加广泛,步进电机也将会从一个传统的工业品,逐步变成一个耳熟能详的名词。
步进电机驱动器根据外来的控制脉冲和方向信号,通过其内部的逻辑电路,控制步进电机的绕组以一定的时序正向或反向通电, 使得电机正向/反向旋转,或者锁定。以1.8度两相步进电机为例:当两相绕组都通电励磁时,电机输出轴将静止并锁***置。在额定电流下使电机保持锁定的力矩为保持力矩。如果其中一相绕组的电流发生了变向,则电机将顺着一个既定方向旋转一步(1.8度)。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。
以上内容由和利时公司为您提供,希望对同行业的朋友有所帮助。
版权所有©2025 产品网