熔化切割一般使用惰性气体,如果代之以氧气或其它活性气体,材料在激光束的照射下被点燃,与氧气发生激烈的化学反应而产生另一热源,使材料进一步加热,称为氧化熔化切割。
由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。一般来讲,建以议12mm以内的碳钢板、10mm以内的不锈钢板等金属材料切割推荐使用激光切割机。激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的***)。可以使用脉冲模式的激光来限制热影响,激光的功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。
在五、六十年代作为板材下料切割的主要方法中:对于中厚板采用氧火焰切割;对于薄板采用剪床下料,成形复杂零件大批量的采用冲压,单件的采用振动剪。七十年代后,为了改善和提高火焰切割的切口质量,又推广了氧精密火焰切割和等离子切割。为了减少大型冲压模具的制造周期,又发展了数控步冲与电加工技术。如果焦点大小和焦点深度在连续加工中发生变化,必然会对加工产生很大影响,比如,会造成切割缝宽度不一致、在相同切割功率下会割不透或烧蚀板材等。各种切割下料方法都有其有缺点,在工业生产中有一定的适用范围。激光切割机的研发与应用无疑是对现代工业生产的重大提高和突破。
激光切割加工过程中,对于激光切割的粗糙度是有要求的,特别是中厚板的工件,在切割过程中如果不注意的话很有可能造成切割的失误,所在一般都要求必须控制激光切割机切割面的粗糙度。激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。对于厚度2mm以上板材的激光切割,切割面粗糙度的分布是不均匀的,沿厚度方向差别很大,其变化状况有两个显著的特点:
1)切割面的形貌分为截然不同的两部分,上部表面平整光滑,切割条纹整齐、细密,粗糙度值小;下部切割条纹紊乱,表面不平整,粗糙度值大。上部具有激光束直接作用的特点,下部则有熔化金属冲刷的特征。
2)切割面上部区域内的表面粗糙度大体上是均匀一致的,不随高度而变化;而下部区域的表面粗糙度则随高度而变化,越靠近下缘,表面粗糙度值越大,下缘处的表面粗糙度达到大值。对于没有冲压装置的激光切割机有两种穿孔的基本方法:爆裂穿孔:(Blastdrilling),材料经连续激光的照射后在中心形成一凹坑,然后由与激光束同轴的氧流很快将熔融材料去除形成一孔。无论是连续激光切割机激光切割,还是脉冲激光切割,切割面都显示有明显的上、下两部分,所不同的是脉冲激光切割面上部的切割条纹与脉冲频率有对应关系:频率越高,条纹越细密,表面粗糙度越值而连续激光切割时切割面上部的切割条纹密度和表面粗造度则主要与切割速度有关。
因此在评价切割面质量时应以下缘表面粗糙度为基准。但真正的下缘只是一根线,其粗糙度难于测量,这可以通过测量临近下缘处的粗糙度代替。
版权所有©2025 产品网