超高压电缆直径价 长能电力电缆公司
作者:长能电力2021/11/19 16:09:21






(3) 在场地条件、地质条件允许的情况下,可采用1:1系数放坡开挖;也可根据排管埋深及地质条件作相应调整,但必须保证放坡开挖时基坑侧部土体的稳定及施工的安全。

(4)基坑开挖不应对电缆沟埋深下的地基产生扰动。

(5) 若因为客观条件限制无法放坡开挖时,应在基坑开挖前及过程中根据相关规程、规范要求,设置基坑的围护或支护措施。一般情况下,开挖深度小于3m的沟槽可采用横列板支护;开挖深度不小于3m且不大于5m的沟槽宜采用钢板桩支护。

(6) 沟槽边沿1.5m范围内严禁堆放土、设备或材料等,1.5m以外的堆载高度不应大于1m。

设计要点

(1)根据基坑深度、地质情况和周围环境说明应采取适当的开挖方式。

(2)有地下水时应说明采取必要的处理措施。

施工要点

(1)复缆沟(电缆隧道)中心线走向、折向控制点位置及宽度的控制线。

(2)基坑开挖采用机械开挖人工修槽的方法。机械挖土应严格控制标高,防止超挖或扰动地基,分层分段开挖,设有支撑的基坑须按施工设计要求及时加撑;槽底设计标高以上200~300mm应用人工修整。

(3)超深开挖部分应采取换填级配良好的砂砾石或铺石灌浆等适当的处理措施,保证地基承载力及稳定性。

(4)若无法放坡开挖,需采用钢板桩支护时,钢板桩的施工方法及布桩型式应满足相关规程、规范及技术标准的要求,坑底以下入土深度一般与沟槽深度之比不小于0.35。

(5)必要时,应进行深基坑的支护,确定支护桩的深度及横向支撑的大小及间距,一般支撑的水平间距不大于2.0m。

(6)基坑开挖完成后,应进行钎探验槽,验收合格后方可进行下步施工。

(7)开挖过程中应做好沟槽内的排水工作,局部较深处可以考虑采取井点降水。地下水应降至基坑底部1.0-1.5m。

(8)横向支撑应做好伸缩调节措施,围檩与钢板桩应固定可靠。

(9)基坑四周用钢管、安全网围护,设安全警示杆,夜间设灯,并安排专人看护。

(10)雨期施工时,应尽量缩短开槽长度,逐段、逐层分期完成,并采用措施防止雨水流入基坑。

(11)冬期施工时,基坑挖至基底时要及时覆盖,以防基底受冻。


(1)检查隧道高程(±30mm)、中心线偏差(±30mm)。电力沟道槽底高程(±10mm),边坡不陡于规定坡度,每侧工作面宽度不小于施工规定(包括工作面宽度)。

(2)检查隧道开挖过程核心土的留置,根据土质情况留置核心土的大小,要保证掌子面土方的稳定。

(3)检查土方不应超挖、欠挖,允许偏差+50mm。


基坑开挖图

2. 电缆沟(隧道)本体工程

2.1垫层

工艺标准

(1) 应确保垫层下的地基稳定且已夯实、平整。

(2) 垫层材料宜采用混凝土;若采用其他材料,应根据工程实际情况合理选取并满足强度及工艺的相关要求。

(3) 若有地下水应采取适当的处理措施,在垫层混凝土浇筑时应保证无水施工。

(4) 垫层混凝土应密实,上表面应平整。

(5) 垫层混凝土的强度等级不应低于C10(小编提醒:新规程不低于C15)。



2.4电缆沟(隧道)混凝土浇筑及养护

(1) 混凝土的强度等级不应低于C25。

(2) 根据施工缝的设置要求,进行两次浇筑,浇筑时应振捣密实。

(3) 混凝土浇筑后采取适当的养护措施,保证本体混凝土强度正常增长。

(4) 若处于严寒或寒冷地区,混凝土应满足相关抗冻要求。

(5) 电缆隧道混凝土结构的抗渗等级应不小于S6。

(6) 电缆沟侧墙在盖板的搁置位置宜采取适当的保护支口措施,保证盖板搁置位置下的混凝土在盖板安装及正常使用中不开裂、不破损。电缆沟止口的允许标高偏差≤5mm。

(1)结构的设计使用年限

(2)主体结构的安全等级

(3)主体结构的防水等级及防水措施

(4)现浇混凝土强度等级,抗渗等级

(5)混凝土材料应根据使用年限来确定应满足的耐久性基本要求。

(1)浇筑前,混凝土应搅拌均匀,坍落度应满足相关技术标准。

(2)混凝土浇筑时,应振捣密实,检查模板有无移位、漏浆。混凝土自由下落高度不大于2m,如超过2m应增设软管或串筒等措施。

(3)浇筑混凝土应连续进行,如必须间歇,其间歇时间应在分层混凝土初凝前完成上层混凝土的浇筑。墙体混凝土浇筑时应分层连续对称进行,两侧墙必须均匀下灰。

(4)按图纸和规范要求合理设置施工缝。水平施工缝上、下本体采用两次浇筑。

(5)在采用插入式振捣时,混凝土分层浇筑时应注意振捣器的有效振捣深度。振捣墙身混凝土应用φ35mm插入式振捣器。振捣底板混凝土应用平板式振动器。

(6)捣固时间应控制在25~40s,应使混凝土表面呈现浮浆和不再沉落。

(7)混凝土浇筑完毕后应加强养护,当混凝土达到设计强度的75%后方可拆除模板。

(8)做好成品的保护工作,防止污染和磕碰。



n在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将长生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆容易击穿的部位。

n

n电缆容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108 ~1012 Ω·CM材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。关于单相短路时,金属层产生的鳡应电压计算针对110kV及以上交流系统中性点为直接接地,系统发生单相短路时,在金属层单点接地的电缆线路,沿金属层产生的鳡应电压按照以下计算:无并行回流线:。

      电应力控制是中高压电缆附件设计中的极为重要的部分。应力控制是

对电缆附件内部的电场分布和电场强度实行控。对于电缆终端而言,电

场畸变为严重,影响终端运行可靠性的是电缆外屏蔽切断处,电

缆中间接头电场畸变的影响,除了电缆外屏蔽切断处,还有电缆末端绝

缘切断处。为了改善电缆绝缘屏蔽层切断处的电应力分布,一般采用以

下几种方法:

(一)参数控制法:  

  采用高介电常数材料缓解电场应力集中 高介电常数材料:采用应力控制

层。其原理是采用合适的电气参数的材料复合在电缆末端屏蔽切断处的绝缘表面

上,以改变绝缘表面的电位分布,从而达到改善电场的目的。另一方法是增大屏

蔽末端绝缘表面电容(Cs),从而降低这部分的容抗,也能使电位降下来,容抗

减小会使表面电容电流增加,但不会导致发热,由于电容正比于材料的介电常

数,也就是说要想增大表面电容,可以在电缆屏蔽末端绝缘表面附加一层高介电

常数的材料。  


商户名称:中山长能电力技术有限公司

版权所有©2024 产品网