由于奥氏体在低温环境下非常不稳固及分解, 使原来的缺陷 ( 微孔及内应力集中的部份 ) 产生塑性流动而变成***细化, 因此只要将金属置于超低温环境下, 其中的奥氏体会转化成马氏体, 内应力因而消除。
在超低温时由于***体积收缩, Fe 晶格常数缩细而加强碳原子析出的驱动力, 于是马氏体的基体析出大量超微细碳化物, 这些超微细结晶体会使物料的强度提高, 同时增加耐磨性与刚性。
超低温度可转移金属原子的运能, 使原子之间不能扩散分开从而使原子结合更紧密。
对于钢铁材料,零件淬火后,马氏体***中存在存在一定量的残余奥氏体,尤其是马氏体转变温度较低的材料,残余奥氏体可能多达10%以上。残余奥氏体是一种不稳定***,可以逐步转变成马氏体。奥氏体转变成马氏体体积会变大,造成零件尺寸的变化。同时,奥氏体的机械性能也不稳定。电磁感应加热,或简称感应加热,是加热导体材料比如金属材料的一种方法。深冷处理就是将淬火后工件置入较低温度的环境中(比如5℃以下的冷水中),促进残余奥氏体向马氏体的转变,以提高材料性能。一般比较重要的零件才会采用深冷工艺,比如精密量具,精密轴承等。渗碳热处理
气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂或液体渗剂(煤油或苯、酒精、),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。
固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种早的渗碳方法。
液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。
时效热处理
生产工艺
绝大多数进行时效强化的合金,原始***都是由一种固溶体和某些金属化合物所组成。固溶体的溶解度随温度的上升而增大。在时效处理前进行淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在快速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中分析出来,而形成过饱和固溶体。2)根据共渗温度的不同,又可分为低温(500℃~600℃),中温(700℃~800℃)和高温(900℃~950℃)碳氮共渗3种。为达到这一目的而进行的淬火常称为固溶热处理。[1]
经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒(一般是金属化合物,也可能是过饱和固溶体中的溶质原子在许多微小地区聚集),形成一些体积很小的溶质原子富集区。[1]
在时效处理前进行固溶处理时,加热温度必须严格控制,以便使溶质原子能限度地固溶到固溶体中,同时又不致使合金发生熔化。许多铝合金固溶处理加热温度容许的偏差只有5℃左右。进行人工时效处理,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果。将钢加热到稳定奥氏体状态,在该状态下形变,随后淬冷,得到马氏体***。生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间。这样作有时会得到较好的效果。[1]
马氏体时效钢淬火时会发生***转变,形成马氏体。马氏体就是一种过饱和固溶体。这种钢也可采用时效处理进行强化。[1]
低碳钢冷态塑性变形后在室温下长期放置,强度提高,塑性降低,这种现象称为机械时效。[
版权所有©2025 产品网