别人家的空气预热器反转改造分析
针对某电厂2号锅炉排烟温度高的问题,对29-VI(T)型空气预热器反转改造进行可行性分析,提出改造方案及注意事项,通过空气预热器转子反转前后运行参数比对,认为空气预热器转子反转改造节能效果明显,可为同类机组提供借鉴。
对于电站锅炉,排烟热量损失是锅炉效率损失中一项,约占锅炉所有损失的75%。锅炉的排烟温度一般设计值在120 ~ 130 ℃,相关资料表明,排烟温度每降低19℃,机组供电煤耗可下降0.187g/kWh。火电机组实际运行中,由于煤种偏离设计值、锅炉受热面存在结渣等问题,国内锅炉大多存在实际运行排烟温度高于设计值,影响机组的经济运行。
空气预热器的注意事项
a.空气预热器内部密封片的折边问题,空气预热器径向密封片、轴向密封片设计有折边,密封片的折边必须顺应空气预热器转向要求。因此,进行空气预热器反向改造时需将2台空气预热器的密封片进行交换使用;
b.由于空气预热器减速箱有转向问题,因此进行改造时需将2台空气预热器马达及减速箱进行整体交换使用。
对空预器的改造
脱硝系统中当氨的逃逸量为 1 μL/L 以下时,烟气中的氨含量很少,NH4HSO4生成量也很少,此时空预器的堵塞现象较轻;当氨逃逸量增加到 2 μL/L时,空预器正常运行 0.5 年后发生明显的堵塞现象;当氨逃逸量增加到 3 μL/L 时,空预器正常运行 0.5年堵塞现象严重。因此,控制氨逃逸量是保证空预器性能的关键。脱硝系统实际运行过程中,造成氨逃逸率高的原因主要是催化剂活性降低、NOx和NH3浓度场分布不均匀以及氨过喷。NOx和 NH3浓度场分布不均匀可通过调整喷氨的各阀门开关程度调整浓度场分布。SCR 催化剂的使用寿命一般为3 年。在催化剂使用 15 000~20 000 h 后,其活性通常约降低 1/3。此时如果要提高 NOx转化率,需要增大催化剂的注入量,但这又会造成 NH3逃逸水平的 (>5 μL/L)。因此,工程中采用通过预留催化剂将来层的方法来控制 NH3逃逸率,即在 SCR 投运的初始阶段,使用 2 层或 3 层催化剂;2 年后,新增 l 层催化剂;3 年后,更换已到使用寿命的催化剂,确保 NH3逃逸率始终控制在 3 μL/L 以下。
合成氨工业中上、下行煤气的余热回收
根据我国工业发展的特殊情况,我国的合成氨工业从生产规模上可分为小合成氨、中合成氨和大合成氨生产。生产的原料路线有煤、油及。由于原料路线不同因而生产工艺路线及采用的设备也不尽相同。针对不同工艺路线设计的特点,热管技术在合成氨工业生产中有以下几种应用类型。
①回收低温余热预热助燃空气,或生产低压蒸汽作为生产原料;②回收高温余热生产中压蒸汽作为原料蒸汽的补充,或生产高压蒸汽作为生产的动力源;③控制固定床催化反应器的化学反应温度,使其向反应温度曲线无限逼近,从而提高CO变换反应器的CO变换率及合成氨塔内氨的合成率。
以上三种类型在不同的生产规模及不同的原料工艺路线中应用的方式及设计思路均不同,必须针对不同的实际条件采用不同的结构设计才能收到良好的效果。
版权所有©2024 产品网