




空气预热器结构
端柱
端柱支撑着包括转子导向轴承在内的顶部结构。每一端柱上都含有轴向密封板,轴向密封板与上下扇形板连为一体。端柱与底部结构的扇形板支板相连,并通过铰链将载荷直接传递到底梁和用户钢架上。
顶部结构
顶部结构上连接有顶部扇形密封板,顶部扇形密封板在设定固定前由若干个调节螺杆悬吊在扇形板支板上。顶部结构将两端柱连为一体,组成一中心承力框架,一方面将顶部导向轴承***在中心位置并支撑由顶部轴承传递的横向载荷,另一方面还承受着由驱动装置扭矩臂传递过来的载荷。顶部结构扇形板支板的翼板在烟气和空气侧开有若干个通流槽口。以使顶部结构梁的上下温度场尽可能分布均匀,从而减少顶部结构纵向热变形和转子热端径向间隙的变化。
空气预热器腐蚀积灰问题探讨
目前国内形势下,对燃煤电站的环保排放要求越来越严格,为了达到氮氧化物的排放标准,燃煤电站大量采用在烟道中喷入液氨或尿素等还原剂的方式以降低氮氧化物的排放量,在此过程中氨气发生挥发而后随着烟气的排放而排放,造成氨逃逸现象。烟气经过 SCR 装置时,部分 SO2在催化剂的作用下发生氧化反应生成 SO3,SO3与逃逸的 NH3及水蒸气发生化学反应生成 NH4HSO4和(NH4)2SO4。其中较多地生成 NH4HSO4,而(NH4)2SO4产生量很少,且为粉末状,处于积灰中,对空气预热器几乎无影响。而 NH4HSO4的沸点为 350 ℃,熔点为147 ℃ , 空 预 器 的 冷 端 温 度 较 低 , 温 度 区 间 处 于NH4HSO4熔点温度范围内,此时NH4HSO4的黏性很大,容易黏附烟气中带入的飞灰颗粒,将其吸附在空预器的冷端管壁上,造成管壁的腐蚀和积灰,增加了空预器阻力的同时降低了空预器的传热能力。不同煤种中硫元素含量的不同对空预器腐蚀的影响程度也不同,含硫量越高的煤种其烟气中 SO3的浓度越大,生成的NH4HSO4越多,空预器的腐蚀积灰越严重。
对空预器的改造
脱硝系统中当氨的逃逸量为 1 μL/L 以下时,烟气中的氨含量很少,NH4HSO4生成量也很少,此时空预器的堵塞现象较轻;当氨逃逸量增加到 2 μL/L时,空预器正常运行 0.5 年后发生明显的堵塞现象;当氨逃逸量增加到 3 μL/L 时,空预器正常运行 0.5年堵塞现象严重。因此,控制氨逃逸量是保证空预器性能的关键。脱硝系统实际运行过程中,造成氨逃逸率高的原因主要是催化剂活性降低、NOx和NH3浓度场分布不均匀以及氨过喷。NOx和 NH3浓度场分布不均匀可通过调整喷氨的各阀门开关程度调整浓度场分布。SCR 催化剂的使用寿命一般为3 年。在催化剂使用 15 000~20 000 h 后,其活性通常约降低 1/3。此时如果要提高 NOx转化率,需要增大催化剂的注入量,但这又会造成 NH3逃逸水平的 (>5 μL/L)。因此,工程中采用通过预留催化剂将来层的方法来控制 NH3逃逸率,即在 SCR 投运的初始阶段,使用 2 层或 3 层催化剂;2 年后,新增 l 层催化剂;3 年后,更换已到使用寿命的催化剂,确保 NH3逃逸率始终控制在 3 μL/L 以下。
版权所有©2025 产品网