数控车床的运用现已成为了一种趋势
数控车床在近几年的发展越来越好,高速、精密、复合、智能和绿色是数控车床技术发展的总趋势。运用已经成为了一种趋势,下面来为大家详细介绍一下:
①机床复合技术进一步扩展随着数控车床技术进步,复合加工技术日趋成熟,包括铣-车复合、车铣复合、车-镗-钻-齿轮加工等复合,车磨复合,成形复合加工、特种复合加工等,复合加工的精度和效率大大提高。
②数控车床的智能化技术有新的突破,在数控系统的性能上得到了较多体现。小众化消费趋势愈发明显据了解到,随着80后、90后不断生长,已经成为建材家居市场当中的消费主体。自动调整干涉防碰撞功能、断电后工件自动退出安全区断电保护功能、加工零件检测和自动补偿学习功能、高精度加工零件智能化参数选用功能、加工过程自动消除机床震动等功能进入了实用化阶段,智能化提升了机床的功能和品质。
③机器人使柔性化组合效率更高机器人与主机的柔性化组合得到广泛应用,使得柔性线更加灵活、功能进一步扩展、柔性线进一步缩短、效率更高。
④精密加工技术有了新进展数控金切机床的加工精度已从原来的丝级提升到微米级,通过机床结构设计优化、机床零部件的超精加工和精密装配、采用高精度的全闭环控制及温度、振动等动态误差补偿技术,提高机床加工的几何精度,降低形位误差、表面粗糙度等,从而进入亚微米、纳米级超精加工时代。分析殛处理过程:某加工中心主轴***不良,引发换刀过程发生中断。
⑤功能部件性能不断提高功能部件不断向高速度、高精度、大功率和智能化方向发展,并取得成熟的应用。
在机电一体化的年代中,数控车床的运用现已成为了一种趋势,从前的数控车床的运用技能和空间环境还不算非常的完善,可是如今的工业开展现已达到了杰出的作用,渐渐的推进机电一体化走向了老练的范畴,从开发到开展到如今老练的范畴,数控车床的开展现现已历了太多的崎岖,可是出路是光亮的。4、X/Y/Z轴重复***精度检测激光干涉仪(视设备品牌可以自动补偿)。
数控车床是如今工业制作的必备的设备,也是有必要的设备之一,进行机械制作的一起,数控车床的运用意图即是能够大大的添加运用的规模,而且在必定程度上推进工业的出产,进步作业的功率。在FANUC-0i系统中,有时还可采用交错螺纹切削方式,G76编程如下所示:G76X28。自从中国数控车床的技能开展到了老练期今后,各个范畴都开端了关于数控车床的广泛重视。
从航空工业的制作,一直到汽车电气的制作,无不领会到了数控车床带来的便利和运用的功率,无需进口的技能,中国的数控车床的技能就现已达到了领xian的水平,而且推进经济的开展成为了不竭的动力,所以这是机电一体化的重要的成果之一,不光推进着工业的开展,也相同的推进了电气职业的开展。3)其移动部分与数控铣显着的不同之处在于加宽了导轨与导轨之间的距离,以克服不良力矩的影响。
怎样解决数控机床加工精度异常的故障
生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。导致此类故障的原因主要有以下方面:
1)机床进给单位被改动或变化
2)机床各轴的零点偏置(NULLOFFSET)异常
3)轴向的反向间隙(BACKLASH)异常
4)电机运行状态异常,即电气及控制部分故障
5)此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
1.系统参数发生变化或改动
系统参数主要包括机床进给单位、零点偏置、反向间隙等等。在MDI方式下,以G54坐标系运行一段程序即“G90G54Y80F100。例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。
2.机械故障导致的加工精度异常
一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。与立式加工中心相比较,卧式加工中心加工时排屑简单,对加工有利,但布局杂乱.报价较高。一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。调查中了解到:故障是突然发生的。机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。分析认为,主要应对以下几方面逐一进行检查。
(1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
(2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。
(3)检查机床Z轴精度。数字式和模拟式检测方式数控式检测方式是将被测量单位量化以后以数字形式表示,其测量信号一般为电脉冲,可以直接把它送到数控系统进行比较、处理。用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,***精度良好。而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=0.1mm(斜率大于1);②表现出为d=0.1mm>d2>d3(斜率小于1);③机床机构实际未移动,表现出标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),***到机床的正常运动。
无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。补偿中发现,间隙补偿越大,第①段的移动距离也越大。
分析上述检查,数控技工培训认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046。电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。而正常情况下,应能感觉到轴承有序而平滑的移动。经拆检发现其轴承确已受损,且有一颗滚珠脱落。更换后机床***正常。
3.机床电气参数未优化电机运行异常
一台数控立式铣床,配置FANUC0-MJ数控系统。在加工过程中,发现X轴精度异常。检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。
分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。利用FANUC系统的参数功能,对电机进行调试。首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲***功能参数,X轴电机的抖动消除,机床加工精度***正常。
4.机床位置环异常或控制逻辑不妥
一台TH61140镗铣床加工中心,数控系统为FANUC18i,全闭环控制方式。加工过程中,发现该机床Y轴精度异常,精度误差xiao在0.006mm左右,da误差可达到1.400mm.检查中,机床已经按照要求设置了G54工件坐标系。例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。在MDI方式下,以G54坐标系运行一段程序即“G90G54Y80F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046.605”,记录下该值。然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046.992”,同第yi次执行后的数显示值相比相差了0.387mm.按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复***误差过大。对Y轴的反向间隙及***精度进行仔细检查,重新作补偿,均无效果。因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当Y轴松开时,主轴箱向下掉,造成了超差。
对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。调整后机床故障得以解决。
当前,中国医liao改革正在***范围内进行。机械故障导致的加工精度异常一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。yi改为医liao医yao公司的发展供给了良好契机。据介绍,当前健康工业的年均市场价值为8000亿元,并且会以每年 20%的速度增加,远远超越GDP的增速。随着新技术的不断涌现,民众的健康需要还会被不断激发出来。有关公司若能把这些产品 和服务有机地进行结合,则可 以构成体系的产业链,降低成本的同时,完成公司的利润da化。
经过二十多年的改革开放,在国内汽车制造业零部件制造领域,数控车床加工的使用越来越广泛。但大多是从欧,美,日进口机床,欧美日机床的特点是:可靠性好,故障率低;人机界面的设计重视人性化;带有主动测量及补偿系统;可以提供带自动上下料装置加工单元;机床设计模块化。对于不锈钢和耐热合金等难加工材料来说,可以采用冷却剂或选用刚性好的刀刃。而国产数控机床厂家虽然不少,但从品种看,仍然是低层次的通用数控车床较多,对于适合大批量汽车发动机,变速箱,底盘主要零部件的多轴数控加工心,品种少,并且大多没有经受大批量生产考验。
版权所有©2025 产品网