?合金结构钢的焊接性有哪些
合金结构钢的焊接性:
SR裂纹(消除应力裂纹,再热裂纹):含Mo正火钢厚壁压力容器之类的焊接结构,进行焊后消除应力热处理或焊后再次高温加热的过程中,可能出现另一种形式的裂纹。
韧性是表征金属对脆性裂纹产生和扩展难易程度的性能。
低合金钢选择焊接材料时必须考虑两个方面的问题:①不能有裂纹等焊接缺陷②能满足使用性能要求。热轧钢及正火钢焊接一般是根据其强度级别选择焊接材料,其选用要点如下:①选择与母材力学性能匹配的相应级别的焊接材料②同时考虑熔合比和冷却速度的影响③考虑焊后热处理对焊缝力学性能的影响。
确定焊后回火温度的原则:①不要超过母材原来的回火温度以免影响母材本身的性能②对于有回火的材料,要避开出现回火脆性的温度区间。
调质钢:淬火+回火(高温)。
高强钢焊接采用“低强匹配”能提高焊接区的抗裂性。
焊接中的缺陷总结分析:
现象:这是常见的一种通病,既不美观、危害性还很大。溶合性飞溅会增加用材表面的淬硬***,易产生硬化及局部腐蚀等缺陷。
原因: 焊材在保存中药皮受潮变质,或所选用的焊条与母材不相匹配。焊接设备选择不符合要求,交、直流焊接设备与焊材不符合,焊接二次线极性接法不正确、施焊电流大、焊缝坡口边缘有杂物及油垢污染、焊接环境不符合焊接要求等。操作者技术不熟练,未按规程操作和防护。
防治措施:根据焊接母材选择合适的焊接设备。焊条要有干燥恒温设备,在干燥室有去湿机、空调机、距地、墙不小于300mm,建立焊条收发、使用、保管等制度(特别是对压力容器)。焊口边缘进行清理排出水分、油污及杂物锈蚀。冬雨季施工搭接防护棚保证施焊环境。对有色金属和不锈钢施焊前,可在焊缝两侧线母材上涂以防护涂料做为保护。还可选择焊条和薄药皮焊条及气体保护等方法,消除飞溅物和减少熔渣。焊工操作要求及时清理焊渣和防护。
激光焊接的重要参数
离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上的功率密度近似相同,但实际上所获得的熔池形状有一定差异。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。
焊接速度:焊接速度对熔深有较大的影响,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。因此,对一定激光功率和一定厚度的特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得较大熔深。
保护气体:激光焊接过程常使用惰性气体来保护熔池,对大多数应用场合则常使用氦、氮等气体作保护。保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射,在高功率激光焊接时,喷出物非常有力,此时保护透镜则更为必要。保护气体的第三个作用是可以有效驱散高功率激光焊接产生的等离子屏蔽。金属蒸气吸收激光束电离成等等离子体,如果等离子体存在过多,激光束在某种程度上会被等离子体消耗掉。
机器视觉在自动化焊接中的应用
随着机器人自动焊接技术的快速发展,机器视觉技术的需求越来越强,一方面导致了机器视觉技术的应用领域扩大化,另一方面对该技术的要求也更加严格和健全,这有力的推动了该技术的发展。
焊接的特点是工艺因素复杂、劳动强度大、生产周期长、劳动环境差,其品质依赖操作者的技能、技术和经验,也和操作者情绪及身体状况相关,因此,焊接自动化技术对于提高接头品质,保证稳定性具有很重要的意义。焊接机器人技术实现了焊接自动化、柔性化,但焊接机器人无法自主获取工件***信息、焊缝空间位置信息、焊缝熔透信息等,也不能自主适应工件与接头组对,焊接热变形等引起的轨迹、坡口尺寸变化,不能进行在线调整,即不具有智能。现实生产中轨迹和接头坡口几何尺寸的变化较为常见,无智能的再现式焊接会出现焊偏、焊穿、未焊透等较为严重的成型缺陷,所以急需基于视觉的智能化焊接技术。
目前,视觉传感技术在焊接机器人上的应用,极大地提高了焊接的质量和效率。机器视觉在自动化焊接中的应用主要有以下几个方面:
一是基于视觉的焊缝识别和焊前引导及焊缝跟踪技术,这是实现自动化焊接的前提;
二是焊接过程中焊缝熔池状态实时监测,通过对熔池图像的提取可以分析焊缝的熔透与熔深状态;
三是焊后焊缝缺陷监测及控制。
版权所有©2025 产品网