针对某烘干机风扇的振动故障,对其故障特征和原因进行描述;通过现场测试、分析,阐明了引起振动故障的原因;通过现场对振动故障原因进行检查,并对故障进行处理,终经过现场动平衡的方法,将该风机的振动降至优良水平,保证发电设备的安全稳定运行。
随着机组容量的增加,引风机作为火力发电厂的重要辅机设备,其烘干机风扇运行性能直接影响着机组的安全稳定与经济性运行。近年来,双级动叶可调轴流式引风机具备着流量调节范围宽、运行、率运行范围宽、调峰能力优等特点,在大容量火力发电机组上得到广泛的应用。由于烘干机风扇涡流的产生和脱落,叶片非工作面辐射的能量基本消失,因为工作面内的气流通过孔流向非工作面,非工作面内的气流获得能量克服粘性力,***了产生和脱落。本文针对某超临界600 MW 锅炉引风机振动故障原因进行分析处理,为其他火力发电厂出现类似问题提供参考。
烘干机风扇主要由进汽室、集流器、双级动叶、导叶、扩压管、动叶调节机构等部件构成。双级叶轮布置在轴承箱两端,引风机转子和电动机转子之间由一根空心长轴连接,在电动机转子及引风机转子侧分别由一个膜片式联轴器与空心长轴连接。边界条件为速度入口和自由出口,实体壁不滑动,采用多旋转坐标系MRF实现了动、静界面之间的数据传输。电动机分别由两个支持轴承和一个推力轴承支撑,双级轴流引风机的支撑方式为:两个支撑转子的滑动轴承,两个支撑轮毂的滚珠轴承和两个平衡轴向推力的角接触球轴承。
烘干机风扇以其和易调节等优点已成为燃煤发电机组的送、引和一次风机的优选。叶片是轴流风机的核心部件,决定风机的性能; 而导叶是轴流风机中重要的流通部件,其气动设计直接影响上下游流通部件的特性。研究表明,烘干机风扇的叶轮机械内的流固耦合现象与流体机械各种故障的产生有直接关系。因此借助流固耦合的方法对导叶数目变化后风机叶片的静力结构及振动进行研究具有重要的现实意义和工程价值。在第1个叶轮的旋转作用下,烘干机风扇气流的动能和压力势能增加,并迅速流向第二个叶轮,第二个叶轮可以加速,以获得更高的能量。导叶结构、数目和安装角度对提高流体机械的性能、降低烘干机风扇噪声和减轻振动具有明显影响。利用试验对轴流泵有无导叶时的外特性进行测试,表明在较优工况下导叶可回收的旋转动能约占叶轮出口总能量的15. 7%,验证了导叶对提高能量利用率的作用。
模拟烘干机风扇导叶数
目不同时泵内的压力脉动特征,指出导叶数变动对导叶区流域及其下游流域的压力脉动具有一定影响,而对上游叶轮流域的流动影响则较小。利用数值模拟方法对导叶与叶轮匹配进行研究,表明导叶数目增加后模型压力提高329Pa,轴功率降低1. 2 kW,效率提高6%。常用的烘干机风扇噪声治理方法有加装隔声罩,对风机室墙壁进行吸隔声处理,风机室隔声门,进排气筒加消声器等从整体上对风机进行吸声、隔声、消声等综合治理措施。模拟了轴流风机后导叶改变对风机性能的影响,表明导叶数目减少4 片后全压提升5. 4 Pa,效率提高0. 8%。
烘干机风扇振动也是电厂轴流风机运行中的常见故障。当风机振动达到一定水平时,会导致叶片和轴承不同程度的损坏,或螺钉松动。如果风机振动严重,也会影响风机的安全使用。风机振动主要由叶片非工作面振动引起。这种振动在锅炉引风机中经常发生。造成这种现象的主要原因是,当进入叶片时,气流和叶片的工作面有一定的角度。结果:采用轴流风机吸风负压通风,冷风通过仓底通风口进入仓内,由下至上通过轴流风机出口排出仓外。当角度超过某一临界值时,非工作面就会出现气流漩涡。此时,气流携带的灰尘将缓慢积聚在非工作面上。而烘干机风扇叶片的形状是翼型,这种类型的叶片容易积灰,当积灰量达到一定量时,在离心力的作用下,大部分的灰尘会被甩出叶轮。而由于粉尘是被动抛出的,其它地方的抛出时间不同,数量不均匀,会导致整个叶轮的质量都是粉尘,***了原有的质量平衡,使机组的振动增大。
在解决烘干机风扇旋转失速和喘振的过程中,应采取以下四种措施。首先,要让有关人员了解和掌握轴流风机的特点,并根据实际情况启动和停止运行。在轴流风机运行阶段,应采取措施避免出现喘振区和失速运行。二是对空气预热器密封装置进行了有效的改进。大量的调查研究表明,用搪瓷代替空气预热器的低温受热面,可以有效地改善其腐蚀性,同时也可以排放粉尘,减少漏风。根据研究可知,为提高烘干机风扇低频噪声的消声量,在空间允许的条件下,消声片的厚度为100mm较适宜。因此,在改进空气预热器密封装置的过程中,可以用搪瓷代替空气预热器内的低温受热面。三是改善烘干机风扇叶片形状。制造时应使用更多的耐腐蚀材料。第四,在轴流风机运行过程中,必须定期进行维护和试验,这样可以大大避免轴流风机的一些重大事故,也可以在发生一些小事故时及时修理和抢修。
版权所有©2025 产品网