叶轮、蜗壳和集热器是离心风机的三个主要部件。下面详细介绍了各构件及主要结构参数的研究进展。离心风机叶轮的主要结构参数有:叶轮出口直径、叶轮出口宽度、叶轮进口直径、柜式离心通风机叶轮进口宽度、叶片数、叶片进出口安装角度。短叶片为截短半径的前叶片,其余部分与长叶片结构相同,所有叶片出口安装角度为140度。对于风机的整体性能,除叶轮结构参数外,叶轮叶型直接影响风机叶片通道内的流动特性,对风机的总压和效率等性能参数也有很大的影响。目前离心风机叶片型线主要有单圆弧叶片、双圆弧拼接叶片、S型叶片和等减速流型叶片。此外,学者们还研究了三维叶片技术和扭叶片。根据叶片出口安装角度的不同,叶片的安装方式有三种:前向、径向和后向。许多学者对上述叶片型线的性能进行了大量的研究,并深入分析了不同叶片结构的优缺点。对单圆弧叶片和恒减速叶片离心风机的内部流动特性进行了实验研究。结果表明,等减速流型的叶轮不仅使叶轮通道内的压力梯度变化更为规律,而且有效地削弱了柜式离心通风机叶轮出口的射流尾流结构,从而有效地降低了离心风机的流量损失、扩散损失和出口。与单圆弧叶片相比,有效地提高了混合损失的效率。
在柜式离心通风机样机的基础上,只增加了风机叶轮的旋转直径。因此,改进后的风扇与样机的几何相似性不满足风扇相似性原理的条件。柜式离心通风机采用多耦合仿生设计和数值计算方法,研究了仿生叶片的降噪机理。因此,通过改进后的数值计算分析了改进效果。第二种改进方案的基本思想是在风机外壳不变的情况下,增加风机叶轮的旋转直径。风机叶轮的具体改进方法在保持叶片出口安装角度不变的前提下,风机叶轮的旋转直径分别由480 mm增加到490 mm和500 mm。通过对改进后的柜式离心通风机的数值计算,在第二种改进方案中通过增加叶轮的旋转直径来提高风机的总压。当叶轮旋转直径增加到490m时,改进后的风机总压力增加到4765pa,相应的风机运行力矩增加到4.65n.m,风机效率基本不变。当叶轮旋转直径增加到500m时,风机总压力增加到4835pa,但风机扭矩相应增大,风机效率降低。柜式离心通风机样机蜗舌流线图表明,当气体流经样机蜗舌位置时,大量气体通过蜗舌与叶轮之间的间隙T流回蜗壳,流量损失较大。
柜式离心通风机的设计原理是根据单调加速度原理确定圆形和圆锥形集热器的收缩率。为了减少集热器内空气的流动损失,集热器的等效收缩角应为40~60。如果此时温度变化明显,继电器内部的液体装置也会发生剧烈变化,导致指针旋转。(柜式离心通风机集热器喉部,即图4.8所示的B点,不宜过快,即其直径不宜过小,否则集热器减速段扩散角过大。柜式离心通风机锥形收割机扩散段的减速规律应与叶轮进口气流的减速规律基本一致。此外,减速段的外形应与靠近叶轮入口的前叶轮的外形相匹配。稳态(稳态)通常是指计算域中任何物理量的分布不随时间变化。
柜式离心通风机瞬态问题是指物理量在计算域中的分布随时间变化的问题。实际中没有稳定性,但对于某些工程问题,可采用稳态近似计算。3%,但风机的全压值根本坚持不变,这样的改善计划并不能满足对风机全压值5000Pa的要求。在近似稳态计算中,通常忽略瞬态波动或在计算模型中引入全局时间平均值以消除瞬态效应。稳态计算简化了计算模型,但在实际工程计算中,稳态计算模型在特定场合的应用,可以减少对计算资源的需求,方便计算值的后处理。考虑时间效应,柜式离心通风机瞬态计算模型可以在计算域内求解物理量随时间的变化。在某些问题中,必须采用瞬态数值计算,如气动问题中的涡脱落计算、旋转机械中的静动态干扰、失速和喘振、多相流问题中的自由面和气泡动力学、网格问题、瞬态传热问题等。
除了数值模拟和实验测量外,传统的多翼离心风机的性能改进主要集中在多翼离心风机的结构优化设计上,取得了较好的效果。王斗提出了双圆弧叶片的设计方法,解决了柜式离心通风机单圆弧叶片普遍存在的进口负荷大、空分严重的问题。毛泉友采用分段设计法,叶片沿叶片高度方向设计成梯形和矩形截面。通过数值研究发现,分段设计的风机效率比原型风机提高了3.69%,柜式离心通风机风量增加了16.3%。研究发现,后缘自然切割的叶片在翼型表面具有流线型设计,前盘区具有较低的循环流量,可以获得较大的空气量和总压。适用于柜式空调多翼离心风机的叶片设计。柜式离心通风机叶片在不同圆弧曲率角和进口安装角组合下的风机性能。分析表明,双圆弧叶片的气动性能优于单圆弧叶片。其间叶片式风机首要有离心式、混流式、轴流式和横流式四种,其间使用醉广泛的即为离心式风机。通过对刀片的穿孔,吴先军等。使部分气流从高压面流向叶片的低压面,使柜式离心通风机涡流分离点移到叶片下方。这样可以降低叶片出口段分离区的涡流强度和尺度,降低噪声。然而,这种方法需要更高的处理精度。研究发现,在倾斜叶片出口角不变的情况下,与直叶片相比,风体积略有减小,但叶片通道内的流动分离度有所减小。
版权所有©2024 产品网