6-41风机承诺守信 货比三家还是冠熙好
作者:山东冠熙2022/6/23 11:58:30











在总结以往研究经验的基础上,以6-41风机为研究对象,利用NUMECA软件对不同的叶片开槽方案进行了模拟,比较了不同方案下的风机性能优化,并结合分布确定了叶片开槽的较佳参数。叶轮内部流场。本文对6-41风机原叶轮开槽前的内部流场进行了数值模拟。结果表明,风扇叶片通道的吸力面发生了边界层分离,形成了一个较大的涡流区。后半段通道内,吸力面边界层分离较为严重,高速气流占整个通道宽度的65%左右。因此,可以通过在容易发生边界层分离的叶片端部开一个小间隙来防止边界层分离的产生和发展,从而使流经该间隙的部分流体能够吹走吸入面出口附近的流体。以往的研究表明,狭缝的大小对气流有很大的影响,但在粉尘环境中,狭缝过小(狭缝宽度约为2 mm)可能会被堵塞而失去其功能,这限制了该技术在实际中的应用。因此,为了确保6-41风机不发生堵塞,开口处有足够的间隙。在斜槽离心风机样机的基础上,提出了三种改进方案:向内延长风机短叶片可减少短叶片吸力面分离,提高风机效率2。考虑到工程实践中操作的方便性,用A的变化来表示缝的位置,用B的变化来控制缝角的大小。比较采用A/C(c为叶片弦长)与B/C的无量纲形式。在计算和优化槽位和槽角时,采用了固定一个比例和调整另一个比例的方法。




风机作为各行各业的配套产品,广泛应用于地铁通风、矿冶通风、楼宇换气通风,空调设备等。然而,风机作为工业生产中主要的能源消耗设备及噪声来源之一,其科技含量的提升和加工制造工艺的与优化对节约资源和环境保护有着重要的意义。据统计,风机的电能消耗约占***发电量的8~10%,因此提高风机的效率和运行效率是十分必要的。因此,改进后的风扇与样机的几何相似性不满足风扇相似性原理的条件。

6-41风机广泛应用于钢铁、水泥、化工等特种行业。其结构特点是叶轮的宽径比小、内外径比小、由长短叶片间隔且均匀分布,性能特点是压力系数高、流量系数小,因此通常应用于高压小流量的场合,但由于叶轮叶道较长,导致其内部流动损失较大,通常效率较低。并且由于其叶片结构复杂,加工困难,加工成本较高,经济效益差,所以很多风机企业放弃了批量生产的计划,甚至不生产,造成了市场货源短缺,因此进一步的研究如何提高6-41风机效率,改善其加工工艺具有十分重要的意义。针对6-41风机机存在的以上问题,提出了“XQ斜槽式离心风机流场关键部件改进设计研究”的课题。本课题与某风机企业合作,对此型号风机结构进行改进设计,提高其性能。(2)通过观察风机不同截面上的总压和速度等值线,可以得出离心风机的内部流动规律:由于叶轮的旋转,在叶轮入口产生较大的负压值,使空气从集尘器进入叶轮。该课题的成功进行不仅会提高风机的效率,降低能源消耗,还会将风机的科学设计理念带入企业,改善现在中、小、微风机企业粗放型生产的现状。






为了减少6-41风机蜗舌与叶轮间隙过大造成的流量损失,第三种改进方案适当减小了蜗舌与叶轮间隙。但蜗壳舌与叶轮间隙过大,会增加风机的噪声值,降低风机的性能。在前向离心风机中,蜗壳舌与叶轮之间的间隙通常为叶轮旋转直径的0.07-0.15倍。原型6-41风机蜗壳舌与叶轮间隙为叶轮旋转直径的0.11倍。在第三种方案中,蜗壳舌和叶轮之间的间隙分别减小到叶轮旋转直径的0.07倍和0.09倍。当蜗壳舌部间隙为叶轮间隙的0.09倍时,效果较好。锅炉满负荷运行时,两台引风机进口挡板开度为100%/100%,6-41风机电流为120/121A,增压风机运行电流为150A,风机无调整裕度,不能满足机组满负荷要求,负压力在t内调整。可以看出,通过减小6-41风机蜗壳舌片间隙,蜗壳舌片附近的低压涡在设计流量条件下消失,同时蜗壳内部气体再次减少。在设计流量条件下,通过改变蜗舌与叶轮之间的间隙,可以有效地提高风机的总压,降低风机所需的扭矩,提高风机效率2.1%。


(1)本文详细介绍了6-41风机的数值计算过程,包括模型建立、网格化(预处理)、导入求解计算、后处理等。采用数值计算方法对斜槽风机的不同流动条件进行了计算。得到了由SSTK-U湍流模型计算的总压、效率和实验值的误差值。总压和效率的较大误差分别为4%和7%。6-41风机采用数值计算方法对锯齿后缘离心风机的气动噪声进行了数值研究。验证了数值计算结果的准确性。

(2)通过观察风机不同截面上的总压和速度等值线,可以得出离心风机的内部流动规律:由于叶轮的旋转,在叶轮入口产生较大的负压值,使空气从集尘器进入叶轮。在叶轮中,由于叶轮的转动和叶片对气体的作用,叶轮内部沿径向由内向外移动,总压值逐渐增大。较大总压力位于叶轮出口外缘和叶片压力面。从表中可以看出,在设计条件下,风机的总压和效率随网格密度变化不大。由于叶片压力面速度较大,吸力面速度较小,形成了尾流结构。




具体6-41风机改造方案如下。

(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。测量了两台引风机在机组满负荷运行时的实际运行数据。(2)根据试验后实测数据,终确定引风机改造方案。在原风机电机不变的情况下,风机叶轮直径由2557 mm增加到2624 mm,叶片类型发生变化。随着风机叶轮直径的增大,壳体、叶轮、轮毂和集热器都被更换。将原型风机的计算结果与原始测量数据进行了比较,详细分析了SSTK-U湍流模型计算结果的准确性,即离心风机的数值计算。同时,为了提高风机出口挡板的密封性,对风机出口挡板、进口挡板和执行机构进行更换,以提高风机的效率。

(3)引风机轴承冷却方式由工业水冷却改为带风机轴承冷却,降低了用水量。

6-41风机的性能保证:

(1)风量(Tb点工况,145c):134m3/s;

(2)全压升(Tb点工况,145c):7040pa;

(3)风机全压升效率(BMCR):86%,风机输入轴承。这两部分的温度监测大多采用遥控设备完成温度数据的传输和监测。当然,6-41风机温度传感器也是常用的设备,可以完成机组保护和温度监测。当温度超过要求时,继电器将发出警告。如果此时温度变化明显,继电器内部的液体装置也会发生剧烈变化,导致指针旋转。针对这一问题,本文采用混合网格对6-41风机进行网格划分,即结构化网格与非结构化网格相结合的方法。如果指针指示的值达到负载极限,将发出警报。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网