不锈钢耐高温轴流风机承诺守信「山东冠熙」
作者:山东冠熙2022/5/17 11:41:53








导叶数目减少时不锈钢耐高温轴流风机效率明显高于导叶数目增加时的风机效率; 在导叶数目减少的方案中,在qv < 87. 5 m3 /s 时全压全部高于原风机,在高于此流量时提升效果仅方案二比原风机效率稍高,其余方案略低于原风机,在设计流量82. 5 m3 /s 时,方案三的效率提升效果好,提升比例为0. 46 个百分点; 在流量低于设计流量时,方案四至六于原风机,高于设计流量时风机效率低于原风机,且随流量增大,效率下降速度加快。从性能比较上可以看出,方案三表现出优于原风机的性能,所以下文主要针对方案三和原风机进行流固耦合模拟研究。研究不锈钢耐高温轴流风机噪声产生的原因及其防治方法,对提高井下工作环境质量,保证矿井安全生产具有重要意义。

不锈钢耐高温轴流风机轴功率Psh定义为单位时间内原动机传递给风机轴上的能量,其大小可反映不锈钢耐高温轴流风机的能耗。因此导叶数目改造对于经济性的影响可通过轴功率来考察,图5 为原风机和方案三轴功率比较。可以看出方案三比原风机轴功率有少许增加且变化不大,这也与方案三全压提升做功能力增强有密切关系。模拟中的噪声接收点与***标准规定的噪声测试中的传声器位置一致。

不锈钢耐高温轴流风机静力结构特性

在旋转机械中,叶片结构强度和振动直接关系到其安全运行,其取决于叶片表面的气动载荷和本身固有的力学性能。而仅对流体域进行研究还不能完全确定导叶数目变化是否对风机固体域产生影响,为此利用ANSYS Workbench 软件将流场压力数据加载到动叶片表面,对风机动叶进行了单向流固弱耦合,来研究导叶数目变动后动叶等效应力、总变形及振动的变化。如果油站的流量和油压太大或太高,导致空气平衡管堵塞,导致轴承箱正压和漏油,则应在调整油站的油压和油量的同时,将空气平衡管拆下,用压缩空气吹通。



加载气动力、离心力后计算得到不锈钢耐高温轴流风机导叶数目变化后动叶的应力基本没有影响,动叶吸力面的近叶顶部位等值线沿叶高方向近似呈倒S 分布且应力较小; 叶根部分布应力较为复杂,较大值位于叶根中部与轮毂接触位置,此处是由于承受较大的径向离心力、垂直于不锈钢耐高温轴流风机叶片表面的气动力和扭曲的叶型结构共同作用造成; 级等效应力稍微高于第二级等效应力,这是由于离心力沿径向,而气动力垂直于叶片表面,气动力的作用效果***离心力作用效果造成的,但气动力作用效果影响较小; 总变形近似沿对角线方向由小到大发生变化,不锈钢耐高温轴流风机叶根处变形基本为零,较大值变形位于叶顶后缘。由此可知导叶数目变化后,对叶片总变形基本没有影响。因此,不锈钢耐高温轴流风机壳体的模态试验可以避免外界激振力的固有频率,从而有效地避免共振。

不锈钢耐高温轴流风机在静应力强度分析中,通常选取材料的屈服极限作为极限应力,基于第四强度理论对叶片进行强度校核。塑性材料的许用应力[σ]= σs /ns,其中σs是材料的屈服极限,ns为材料的安全系数,一般对于弹性结构材料加载静力载荷的情况下,ns = 1. 5 ~ 2。叶片材料为ZL101,其屈服强度σs = 180 MPa,ns = 2,计算叶片的许用应力为90 MPa,而叶片较大等效应力的峰值为21. 3 MPa,远小于叶片许用应力,因此改型后方案三强度仍满足要求。在叶片刚度方面,前面分析知,气动力作用效果对离心力效果有***作用,方案三全压相对于原风机有所增大,较大变形有所降低。液压缸输入轴的夹紧螺钉没有松动,但发现液压缸输入轴的两个弹簧断裂。


不锈钢耐高温轴流风机运行漏油。如果主轴密封为骨架密封和O形圈漏油,则在叶轮端用拆卸工具拆下叶轮,更换密封;在联轴端,无需拆卸工具即可更换密封。如果油站的流量和油压太大或太高,导致空气平衡管堵塞,导致轴承箱正压和漏油,则应在调整油站的油压和油量的同时,将空气平衡管拆下,用压缩空气吹通。当温度计漏油时,先拆下温度计,再加铜垫,涂上密封胶。不锈钢耐高温轴流风机轴承箱进出口油管漏油可通过加铜垫解决。如果接头处漏油,可以更换并紧固卡套。不锈钢耐高温轴流风机叶片泄漏有两种情况:a)稀油润滑的叶柄泄漏可以通过添加美孚600油或更换油来解决;当两级叶轮向后旋转时,会改变两级叶轮之间的流动方向,产生强烈冲击。b)液压缸泄漏,轮毂中充满油,叶片漏油,需要拆下液压缸,找出漏油原因。风机叶片的漂移和相邻叶片的异步化。在动态调节风机运行过程中,经常出现叶片漂移,风机扩压器振动和气流声不好。解决方法是停机后取下上盖,打开轮毂盖,取下漂移叶片叶柄调节杆,用酒精擦洗叶柄和调节杆的接触面,然后复位拧紧,再加10%~15%的附加扭矩,对非漂移叶片加相同的扭矩,组装后,加液压IC气缸必须重新对齐。


整个不锈钢耐高温轴流风机通风段累计耗电量(总耗电量)为2428kw h,单位耗电量(能耗)为0.02kw h t,根据通风实际能耗,远小于0.04kwH谷仓机械通风技术规程中地笼冷却通风单位能耗t,略高于风扇式轴流风机低速通风单位能耗。通风前籽粒平均含水量13.9%,上层14.0%,下层13.6%,平均通风失水0.2%。上层无明显变化。本次采用风扇式轴流风机对单独的储粮空间进行整体通风。首先检查风机及电源线,确保其安全正常运行;检查仓壁是否有缝隙,门窗是否能严密关闭,保证其气密性;不锈钢耐高温轴流风机内是否有杂质,保证其进气畅通;不锈钢耐高温轴流风机采用优化后的损失和落后角模型,对该风机的5条特性线进行数值模拟,结果如图5所示。及时清理PR风管入口附近的灰尘。不锈钢耐高温轴流风机通风过程中的吸入,影响其通风效果。通风前应检查粮食状况、粮食异常情况及可能出现的通风死角、钥匙标记、通风情况,以保证粮食的安全储存。后依次开启风机,打开所有通风管道,关闭门窗,在仓库内形成负压。仓库外的低温空气通过风道进入,自下而上通过粮堆,开始通风。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网