可逆转耐高温轴流风机诚信企业「山东冠熙」
作者:山东冠熙2022/4/17 9:10:58








可逆转耐高温轴流风机以其和易调节等优点已成为燃煤发电机组的送、引和一次风机的优选。叶片是轴流风机的核心部件,决定风机的性能; 而导叶是轴流风机中重要的流通部件,其气动设计直接影响上下游流通部件的特性。研究表明,可逆转耐高温轴流风机的叶轮机械内的流固耦合现象与流体机械各种故障的产生有直接关系。高频频率是由于叶片在旋转过程中周期性地通过空气中固***置的压力波动引起的,等于叶片的旋转频率乘以叶片数。因此借助流固耦合的方法对导叶数目变化后风机叶片的静力结构及振动进行研究具有重要的现实意义和工程价值。导叶结构、数目和安装角度对提高流体机械的性能、降低可逆转耐高温轴流风机噪声和减轻振动具有明显影响。利用试验对轴流泵有无导叶时的外特性进行测试,表明在较优工况下导叶可回收的旋转动能约占叶轮出口总能量的15. 7%,验证了导叶对提高能量利用率的作用。

模拟可逆转耐高温轴流风机导叶数

目不同时泵内的压力脉动特征,指出导叶数变动对导叶区流域及其下游流域的压力脉动具有一定影响,而对上游叶轮流域的流动影响则较小。利用数值模拟方法对导叶与叶轮匹配进行研究,表明导叶数目增加后模型压力提高329Pa,轴功率降低1. 2 kW,效率提高6%。通过定期维护,及时检查和更换风扇滑块和衬套等易损件,检查叶柄装置,润滑叶柄轴承,旋转维护液压缸,清洗油站和更换润滑油,清洗油冷却器,调整适当的供油压力。模拟了轴流风机后导叶改变对风机性能的影响,表明导叶数目减少4 片后全压提升5. 4 Pa,效率提高0. 8%。



比较两种叶轮的振动模态,可以看出,每种叶片的低阶模态都表现出从叶片顶部到根部的弯曲变形,高阶模态是叶片两侧的扭转变形。可逆转耐高温轴流风机叶轮各级的形状变形和较大变形都在叶片顶部,叶片角度可调的叶轮的叶片变形相对较大,因为其材质为尼龙66,刚度小于Q235,更容易变形。叶片角固定叶轮的叶根与轮毂固定,因此叶根与轮毂相对稳定,基本无变形。由于叶片角度可调叶轮增加了角度调节机构,使得叶根弯曲变形和扭转变形较小。可逆转耐高温轴流风机实验采用了力锤激励、加速度传感器采集信号、LMS数据采集与处理等方法。该测试的主要过程包括:支持被测对象、选择激励方案、布置传感器、确定输入通道、建立测试模型和与通道相关、确定分析带宽、测量和保存数据。检查可逆转耐高温轴流风机空气预热器1B传热元件严重堵塞后,一次风机出口堵塞。由于轮毂变形基本为0,可逆转耐高温轴流风机叶轮通过柔性弹性绳悬挂在轮毂上进行测量。振动方式选择力锤激振,固定锤击点,移动传感器测量。由于叶片的明显变形,每个叶片顶部和根部有两个测量点,叶片下方轮毂有一个测量点,每个叶轮有50个测量点。建立合适的圆柱坐标系,测量各测点的相对坐标,建立测试模型。传感器布置完毕后,测试通道与模型中相应的测量点相关联。通过力锤激励收集数据。同样的方法依次测量每个叶轮的50个测量点。在PolyMax输入模块中选择已有的fr集,在高层稳态图中选择符号较多的列,即阻尼频率、频率和模向量稳定性。


可逆转耐高温轴流风机振动也是电厂轴流风机运行中的常见故障。当风机振动达到一定水平时,会导致叶片和轴承不同程度的损坏,或螺钉松动。如果风机振动严重,也会影响风机的安全使用。风机振动主要由叶片非工作面振动引起。研究表明:导叶数目减少方案风机性能明显优于导叶数目增加的方案,其中方案三为改型性能较佳的方案,改型后的方案其轴功率有所增大、耗电量有所增加。这种振动在锅炉引风机中经常发生。造成这种现象的主要原因是,当进入叶片时,气流和叶片的工作面有一定的角度。当角度超过某一临界值时,非工作面就会出现气流漩涡。此时,气流携带的灰尘将缓慢积聚在非工作面上。而可逆转耐高温轴流风机叶片的形状是翼型,这种类型的叶片容易积灰,当积灰量达到一定量时,在离心力的作用下,大部分的灰尘会被甩出叶轮。而由于粉尘是被动抛出的,其它地方的抛出时间不同,数量不均匀,会导致整个叶轮的质量都是粉尘,***了原有的质量平衡,使机组的振动增大。

在解决可逆转耐高温轴流风机旋转失速和喘振的过程中,应采取以下四种措施。首先,要让有关人员了解和掌握轴流风机的特点,并根据实际情况启动和停止运行。在轴流风机运行阶段,应采取措施避免出现喘振区和失速运行。二是对空气预热器密封装置进行了有效的改进。液压缸输入轴的夹紧螺钉没有松动,但发现液压缸输入轴的两个弹簧断裂。大量的调查研究表明,用搪瓷代替空气预热器的低温受热面,可以有效地改善其腐蚀性,同时也可以排放粉尘,减少漏风。因此,在改进空气预热器密封装置的过程中,可以用搪瓷代替空气预热器内的低温受热面。三是改善可逆转耐高温轴流风机叶片形状。制造时应使用更多的耐腐蚀材料。第四,在轴流风机运行过程中,必须定期进行维护和试验,这样可以大大避免轴流风机的一些重大事故,也可以在发生一些小事故时及时修理和抢修。


可逆转耐高温轴流风机降噪原理和穿孔模型

降噪原理在风机运行过程中,产生的主要噪声是机械噪声和空气动力噪声。其中,可逆转耐高温轴流风机机械噪声主要包括电机噪声、结构振动噪声等。优化结构以降低机械噪声是必要的。空气动力噪声按产生原因可分为旋转噪声和涡流噪声。旋转噪声是由叶片与气流相互作用引起的压力波动引起的。噪声测点距风机出口表面中心1米,测点与出口中心点的连接线距出口表面45度。它也被称为离散噪声或叶片通过频率噪声。产生涡流噪声的主要原因是由于阻力引起的叶片边界层涡流、随主流沿叶片后缘脱落的涡流和叶尖放电。可逆转耐高温轴流风机叶片穿孔减噪是应用穿孔射流***非工作面涡流和分离的原理。当边界层流体的动能能够克服叶片表面的摩擦力时,叶片表面可能形成回流。回流被主流气体带走,导致涡流脱落。涡流以噪声的形式不断地产生和释放出大量的能量。当叶片穿孔时,部分叶片工作面气流流向非工作面,非工作面气流获得更多动能,克服叶片表面的摩擦,***涡流的产生和脱落。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网