因此,当6-41风机产生振动故障现象时,首先必须从基础查找原因。基础因素主要是:
(1)混凝土基座结构设计有缺陷,基座强度和刚度不够;
(2)基础地质差,风机运行一段时间后,造成基础沉降或松动;
(3)混凝土基座材料不合格,浇筑不符合规范要求;
(4)地脚螺栓及垫铁的安装不当。实际中,常采用二次灌浆的方法将地脚螺栓进行固定***,其施工、安装应严格执行规范要求,以确保质量。根据上述分析,基础因素引起风机振动的表征主要有:基础周围地坪有明显振动;基础与地坪或二次灌浆产生的结合面存在明显裂缝,垫铁或地脚螺栓松动,应注意,此类振动往往比较剧烈,严重时发生螺栓断裂,轴承座螺栓孔崩裂,直接造成轴承座报废;基础产生不均匀沉降,产生基座倾斜。6-41风机处理措施:一是验算基础的质量是否符合要求,对于风机等旋转式设备,由于回转而产生的惯性力作用在基础上,为确保安全运行,则基础质量应等于10 倍的风机机组质量,不符合要求应采用加固加重措施;二是有松动的二次灌浆地脚螺栓应破除拔出,孔壁凿毛后重新浇筑混凝土固定地脚螺栓。二次灌浆应保湿养护7 天以上,混凝土强度达到设计强度后才能进行下一步的安装。同时也可以看出,加米字形集流器压力梯度变化趋势比普通圆弧形集流器平缓,对稳定进口气流,保证气流的均匀及稳定有更明显的作用。二次灌浆的混凝土强度可提高一级,固定效果更佳。
某车间6-41风机至2016年止已运行近8 年,振动一直偏大,已困扰生产多年。即使是更新了叶轮总成,并在联轴器对中性符合允差的情况下,运行时前后两轴承位壳振实测振动速度有效值分别达到了3.0 mm/s 和3.6 mm/s 左右,这是属于“可容忍”的范围,但不宜长期运行工作。经我设备人员分析,认为振动大的原因有:一是混凝土基础过于单薄,重量不足,且运行时基础周围地板有明显的颤动;二是预埋地脚螺栓有松动迹象。在大流量工况下,降噪效果变差,这主要因为大流量情况下,蜗壳内气体流速较大,而气体流速对吸声材料的吸声效果影响很大。经上级研究,决定趁当年大修时间充足的机会,对上述存在问题整改,破除旧基础后,按本文前述处理措施重新设计、施工新的混凝土基础和预埋地脚螺栓。
开机正常生产后,该6-41风机轴承位壳振实测振动速度有效值分别降到了0.45 mm/s 和0.52 mm/s,属“良好”级别。安装精度不达标及其检查处理措施安装精度主要是指风机轴与驱动电机轴的同心度,即对中性。离心式风机联轴器的同心度要求很高。把Pro/E建立的几何模型导入Fluent中并对几何模型的边界条件计算参数进行设定。如果联轴器没有找正,或是找正达不到要求,引起6-41风机振动将不可避免。应注意的是,即使原来同心度已经符合要求了,但是风机运行一段时间后,由于各种原因,同心度会也会发生变化,所以应注意定期检查同心度,如发现同心度超过允许偏差了,要立即重新找正。因此,当风机发生异常的振动故障时,检查联轴器的对中情况是必不可少的。
以4-73No.8D 离心风机为研究对象,对比了适配进气箱的两种不同导流器,并测试了噪声;一种包含复杂形状进气箱与旋转叶轮一体的6-41风机的算法,可以很好的揭示斜流风机内部流动的特征;对电站锅炉6-41风机进气箱三维粘性流场进行了数值模拟,分析了进气箱内气体流动特性的影响,并对进气箱的设计和改造提出了建议;Li Jingyin对有无进气箱的轴流风机进行了数值分析,并着重分析了进气箱内部的流动对轴流风机效率下降的影响。本文基于CFX 软件,对有无进气箱两种离心风机,分别建立了数值计算模型,进行了三维数值模拟分析,研究6-41风机其内部流场特性。并与实验的实测数据进行对比分析,验证数值计算结果的合理性。本文采用一种特殊设计的进气箱,这种形式的进气箱削弱了气流在90°转弯过程中的能量损失,在转弯处气流更加的平稳,加速过程更加的均匀。该进气箱进口为矩形,出口为与集流器相连的圆形。金属叶轮是离心风机的重要组成部分,对于离心风机的安全运行和性能起着决定作用。通过solidworks 建立的两种形式的三维模型,两种模型除进气箱外其他尺寸相同。
版权所有©2024 产品网