烘干房排湿风机来电咨询「山东冠熙」
作者:山东冠熙2022/2/12 3:23:17








加载气动力、离心力后计算得到烘干房排湿风机导叶数目变化后动叶的应力基本没有影响,动叶吸力面的近叶顶部位等值线沿叶高方向近似呈倒S 分布且应力较小; 叶根部分布应力较为复杂,较大值位于叶根中部与轮毂接触位置,此处是由于承受较大的径向离心力、垂直于烘干房排湿风机叶片表面的气动力和扭曲的叶型结构共同作用造成; 级等效应力稍微高于第二级等效应力,这是由于离心力沿径向,而气动力垂直于叶片表面,气动力的作用效果***离心力作用效果造成的,但气动力作用效果影响较小; 总变形近似沿对角线方向由小到大发生变化,烘干房排湿风机叶根处变形基本为零,较大值变形位于叶顶后缘。由于烘干房排湿风机动叶片是扭曲叶片,网格单元选用带含有10个中间节点的四面体实体单元Solid187。由此可知导叶数目变化后,对叶片总变形基本没有影响。

烘干房排湿风机在静应力强度分析中,通常选取材料的屈服极限作为极限应力,基于第四强度理论对叶片进行强度校核。塑性材料的许用应力[σ]= σs /ns,其中σs是材料的屈服极限,ns为材料的安全系数,一般对于弹性结构材料加载静力载荷的情况下,ns = 1. 5 ~ 2。n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676。叶片材料为ZL101,其屈服强度σs = 180 MPa,ns = 2,计算叶片的许用应力为90 MPa,而叶片较大等效应力的峰值为21. 3 MPa,远小于叶片许用应力,因此改型后方案三强度仍满足要求。在叶片刚度方面,前面分析知,气动力作用效果对离心力效果有***作用,方案三全压相对于原风机有所增大,较大变形有所降低。


分析了烘干房排湿风机失速的原因。分析了引风机和一次风机的不同失速原因,并分别给出了相应的处理方法。重新调整后,两台引风机的就地机械指示基本相同,但DCS引风机2b开度比2a开度大13%,风机停运后,风机上盖和全行程运行动叶无异常,故液压缸为N。本文总结了近年来轴流风机失速、喘振的情况及相关原因。指出除系统阻力过大外,风机本身的制造不符合标准,如动叶开度不一致或叶顶间隙过大,也可能是造成失速的常见原因。通过山东关西风机的实践和文献总结,

烘干房排湿风机失速的主要原因是:

(1)风机选型与烟气系统阻力不匹配,这一般是由于风压选择参数太小,风机阻力增大过大造成的。环境保护改造后的阻力、空气预热器堵塞或挡板门未全开等,风机实际运行点离失速线太近。

(2)风机在制造或安装上不符合标准,如叶顶间隙过大、动叶角度不一致等制造原因,导致实际失速线下移,使工作点过于靠近失速线。

(3)烘干房排湿风机进口管路布置不合理,导致引风机进口速度分布不均(总压畸变),导致风机实际失速线向下移动,导致风机提前失速。通过以往的文献研究,发现在压缩机领域,叶尖间隙与失速裕度的关系得到了充分的研究。两级叶轮直接与两台电机连接,两级叶轮作为导叶反向旋转,形成一个反向旋转结构。在电站风机领域,现有文献仅定性地讨论了叶尖间隙对失速的影响,没有建立叶尖间隙超调量与风机性能和失速压力之间的定量关系。结合风机大修叶片叶尖间隙数据,提出了一次风机叶尖间隙与风机性能和失速压力的定量关系。


从烘干房排湿风机不同位置和X、Y、Z三个方向的周向振动来看,风机下部固定在底座上,比其他三个周向位置振动小。风机顶部水平振动为严重,主要为1159.86赫兹和1351.40赫兹、1828.22赫兹等高频振动。总体而言,烘干房排湿风机振动主要是两级叶轮叶片通过频率与1159.86赫兹之和引起的,其次是高频气动力引起的振动和风机基频的倍频。例如,2012年7月12日,1号机组DCS发出风机电流差报警。风机振动主要为1351.40赫兹、1640.75赫兹、189.91赫兹和238.82赫兹。风扇基频的第四个频率189.91赫兹与风扇罩的第五阶固有频率193.70赫兹相似。可能发生共振。应通过优化风机结构来避免共振,以避免风机的基频和倍频。


1)对烘干房排湿风机机壳阶固有频率进行模态试验。风扇基频的第四个频率与外壳的第五个固有频率相似。应通过优化风机结构来避免共振。

2)风机进出口振动较小,振动频率主要为风机基频及其倍频。两级叶轮和电机振动较大,主要是由流场气动力引起的高频宽带振动引起的。

3)由于风机下部固定在底座上,产生的振动小于周向位置。风机顶部的水平振动为严重。可以考虑在顶部安装一个减震器以减少振动。


当烘干房排湿风机采用两种不同的叶片进行声功率级分析时,风机的总声功率级分布所示,可以反映出风机各位置单位时间内辐射到空间的声能量。总体而言,风机进出口声功率水平较低,气流在这两个位置稳定,几乎没有涡流。烘干房排湿风机叶轮位置处的声功率级较大,第二叶轮旋转方向与叶轮加速气流的夹角较大,冲击较大。气流比叶轮具有更高的能量,第二叶轮的声功率级大于叶轮。而导叶是轴流风机中重要的流通部件,其气动设计直接影响上下游流通部件的特性。除叶片顶部的声功率级较高外,叶片非工作面中部的声功率级较高,是由于作用在边界层上的粘性力产生的速度梯度,导致回流,被主流带走形成较大的能量辐射,w在第二个叶轮处更明显。烘干房排湿风机叶片穿孔后风扇整体声功率级的分布。风机前后气流稳定,声功率级略低于原叶片,一级叶轮顶部声功率级也略低,减少了叶尖泄漏现象。由于烘干房排湿风机涡流的产生和脱落,叶片非工作面辐射的能量基本消失,因为工作面内的气流通过孔流向非工作面,非工作面内的气流获得能量克服粘性力,***了产生和脱落。涡流。同样,二级叶轮的声功率级也明显降低,但非工作面的涡流没有完全消失。可以考虑改变二级叶轮的穿孔参数来优化二级叶轮的流场。


商户名称:山东冠熙环保设备有限公司

版权所有©2025 产品网