高温烘箱风机气流扰动方面
根据流体动力学研究,在封闭蜗壳的气流压力、风量的变化会改变风机的工作状态致使风机发生振动;当气流通道不畅,气流对动叶的不均匀冲击和腐蚀,也会造成风机的叶片和轴承振动;同时在风机工况改变,需要调整其转速和动叶角度使其满足风压和效率的要求,因此,快速准确预测出轴流风机在安装角变化时的气动性能够提高缩短设计周期和风机运行效率,具有极为重要的工程应用价值。当气流中的粉尘浓度不均匀时,将导致转子受力不均衡,且风机叶片的不均匀磨损,也诱发风机振动异常。
高温烘箱风机润滑系统方面
所用旋转设备的支撑轴承包含两类轴承,即滑动轴承和滚动轴承。轴承的供油和保证其润滑系统的动态特性引起轴承各种形式的振动,对于滑动轴承可能引起油膜涡动和油膜振荡等故障;对于滚动轴承易引起轴承温度高、轴承点蚀及胶粘等故障[5]。对该引风机轴承振动烈度超标的振动现象如下:在高温烘箱风机轴承座和机壳振动烈度中,振动主要以多倍频成分为主,且基频份额占30%左右。根据高温烘箱风机优化后的参数,可以得到在设计转速下动叶和静叶的损失系数以及落后角随冲角的变化趋势,可以看出,损失系数和落后角随冲角的变化基本符合风机的流动特性。可以从以下几方面进行故障排查:
①检查引风机连接情况;
②检查引风机和空心长轴及空心长轴和电机中心情况;
③检查联轴器的膜片情况;
④检查风机是否存在碰磨情况;
⑤检查风机的动叶不同步情况;
⑥风
高温烘箱风机机轴承是否正常。
基于上述情况的分析,首先可以对故障情况进行排查。高温烘箱风机的外部结构如图5 所示,对连接部件进行振动测试。现场测试发现,引风机外壳与轴承座支撑肋板、轴承座支撑肋板与基础台板之间振动幅值之差均在10μm 内,认为该引风机外部连接刚度正常。
本文根据已经完成的一种基于欧拉方程外加源项的模型来计算预测大小动叶可调高温烘箱风机的气动性能,主要采用损失和落后角模型用来考虑叶片排和摩擦对气流的影响,并用堵塞因子修正环壁附面层堵塞影响。根据在风机安装角未发生改变时的实验性能,优化模型中的损失系数和落后角系数使得计算结果和实验计算相近。改变动叶可调风机的安装角后,本模型预测得到的该风机在安装角变化( + 10°,+ 5°,- 5°,- 10°) 的性能曲线与实验结果误差小于2%。运动方程为三维定常雷诺时均N-S方程,采用可有效解决旋转运动和二次流的Realizablek-ε湍流模型,高温烘箱风机的动叶区采用多重参考系模型。结果表明高温烘箱风机模型使用经过优化后的损失和落后角模型能快速准确地预测出该动叶可调轴流风机在全工况下的气动性能。
在实际的高温烘箱风机叶轮机械中,气体的流动是一种十分复杂的、非定常的、全三维的流动。为了提高程序的计算速度,需要做出如下假设: 气体为完全气体; 流场为轴对称; 不考虑径向变化,流场沿叶片中弧线。
在轴流风机的数值计算中,本文采用Stratford 的模型对环壁边界层进行模拟。环壁边界层会沿壁面产生位移厚度,该模型假设位移厚度是沿着叶片排连续分布的,同时端壁边界层和叶尖间隙漏流发生的总压损失也包含在三维总压修正系数3D中,该模型能够计算得出比较合理的堵塞因子。高温烘箱风机导叶数目增加时,在qv<85m3/s时,方案四至六全压得到有效提升,而qv>85m3/s时,仅有方案四全压得到提升。
对高温烘箱风机的结构和工作原理是一种具有对旋结构的轴流风机。两级叶轮直接与两台电机连接,两级叶轮作为导叶反向旋转,形成一个反向旋转结构。本文的研究对象是FBDNO8.0对旋轴流风机,主要用于煤矿巷道的强制通风。两级叶轮额定转速2900r/min,一级叶轮14片,二级叶轮10片,叶轮外径800mm,轮毂比0.60,高温烘箱风机的两级叶轮安装角度分别为46度和30度。工作压力8000pa,较大流量950m3/min,对旋风机结构如图1所示。两级叶轮以相反的速度高速旋转,在风机前部形成较大的负压,使风机外的空气能够流入风中。入口集尘器的作用是保证风管内气流均匀、畅通,有效提高风机运行效率,降低风机噪声。在个叶轮的旋转作用下,高温烘箱风机气流的动能和压力势能增加,并迅速流向第二个叶轮,第二个叶轮可以加速,以获得更高的能量。气流高速稳定地通过扩散器流出风道。旋涡噪声是叶片表面上的气流形成紊流附面层后,随着压力的增加,从叶片上旋涡脱离,引起脉动产生的宽频噪声。风机的整流罩和扩压器分别起到优化进出风流场的作用,以减小气动力对结构的影响。进出口分别设置两层筒形消声器,其主要功能是消除空气动力噪声。与单级轴流风机相比,对旋式局部风机具有结构紧凑、风压高、流量大、等特点,广泛应用于矿井长距离掘进工作面通风。
版权所有©2025 产品网