干燥设备风机推荐「山东冠熙」
作者:山东冠熙2021/11/13 14:31:44












为了探索大负荷大流量风机的关键气动设计技术和内部流动机理,本文设计了一台干燥设备风机,其压力比为1.20,负荷系数为0.83。详细研究了流量系数、反力等设计参数的影响规律,给出了相应的选择原则。分析了叶片负荷调节、叶片弯曲和叶片端部弯曲对叶栅流动、级匹配和级性能的影响,给出了高负荷轴流风机三维叶片设计的基本原则。同时,开发了S1流面协同优化方法,取得了较好的效果。降低了定子损耗,增大了风机裕度。结果表明,锥形间隙能有效地控制间隙内的泄漏流速,减少间隙内的堵塞,从而提高其整体性能。高压风机的设计通常采用离心风机,但离心风机存在迎风面积大、流量小、效率低等缺点。针对大流量、高压力比、率的设计要求,如何完成单级轴流设计成为研究的***。长期以来,轴流风机的设计方法得到了发展。从孤立叶型法、叶栅法、降功率法到目前广泛采用的准三维、全三维气动设计方法,甚至到S1流面叶型优化[6]、三维叶型优化、干燥设备风机三维叶型技术,已经有了大量的研究工作。用于提高设计方法的准确性和快速性。以率、高负荷为设计目标,通过合理选择总体参数,优化了干燥设备风机流面叶片的初步设计和三维叠加,实现了轴流风机的气动设计。





干燥设备风机在实际应用过程中,叶片型线的优化可能面临一个问题。不同叶片高度的不同进水条件导致叶片型线优化结果差异过大,难以对叶片型线进行过度优化。为此,本文提出了多截面轮廓协同优化的方法,建立了轮廓几何与轮廓目标函数之间的关系,使得到的轮廓满足三维实际要求。在优化过程中,增加了叶片型线的几何分析和设计点气流角的调整模块,以保证获得的叶片型线能达到与原型相同的气流转向能力。同时,干燥设备风机设计点的气动性能满足一定要求,否则,可以以罚函数的形式尽快完成叶型的气动分析,提高优化过程的快速性。这是由于叶尖涡度强度增大,泄漏流减弱,叶片前缘涡度明显增大和减小。在确定优化目标时,综合考虑了设计点的性能和非设计条件,干燥设备风机对有效范围内的剖面性能进行了研究。目标函数括号中的项为设计点损失,第二项为有效流入流角范围,边界为设计点损失的1.5倍,第三项为失速裕度,第四项为有效流入流角范围内的平均损失,第五项为平均损失差的方差。有效流入角范围内的分布。分子是分析叶片外形的气动性能,分母是原型参考值。干燥设备风机利用加权因子w对截面之间的关系进行加权,设置目标函数,得到损失小、失速裕度高的多截面S1剖面。各参数的权重和各截面的权重系数决定了优化目标是集中于中间截面的性能,以及中间截面的损失和末端截面的失速裕度。





GAMBIT软件用于干燥设备风机模型建立和网格生成。考虑到干燥设备风机叶片翼型结构的复杂性和顶部区域的三维流动,首先选择三角形网格划分叶片顶部,并利用尺寸函数对网格进行细化,以保证干燥设备风机网格质量。其它区域的网格划分为动叶区域网格作为参考,采用结构化/非结构化混合网格。为了保证精度和网格***性,对原风机在216万、245万、286万和337万网格条件下的性能进行了模拟。结果表明,随着网格数量的增加,总压和效率逐渐接近样本值,337万和286万网格的总压和效率偏差分别为0.085%和0.024%。当干燥设备风机叶顶间隙形状发生变化时,不可避免地会引起叶顶及其附近的吸力面和压力面流场的分布。综合模拟精度和网格数确定了所用的总网格数。这个数字是286万。其中动叶面积198万片,集热器、导叶面积和扩压管网格数分别为30万片、26万片和32万片。在模拟叶尖间隙形状的变化之前,将原始风扇的模拟结果与参考文献中的干燥设备风机性能进行了比较。结果表明,在33.31-46.63m3_s-1流量范围内,总压和效率的平均相对误差分别为3.0%和1.5%,表明结果能够反映风机的实际性能。




干燥设备风机叶尖涡度的增大可以有效地阻碍泄漏流的通过,使干燥设备风机泄漏流与主流混合造成的损失减小,叶片前缘泄漏量的增加小于中、后缘泄漏量的增加。总体上,漏风量减少,提高了风机的性能。这与参考文献中得到的前、后缘对干燥设备风机总压损失系数的影响是一致的。随着间隙的逐渐增大,叶顶前部的涡度强度增大,后缘的涡度强度减小,总体变化较小,泄漏量略有增加。叶片吸力前缘中部涡度强度略有增加,沿弦长方向吸力面中部和后部涡度强度基本不变。干燥设备风机叶片前缘附近的涡度强度急剧增加。从图中不难看出,原型直叶片的进口具有明显的正攻角,端弯叶片的载荷由于分离流动而减小。这是由于前缘点高度的变化导致的叶尖流动角度的变化。前缘点涡度强度的增加阻碍了吸力面附近的流入,也降低了主流与泄漏流的混合程度。虽然方案6的进风速度有所降低,但由于叶顶和后缘附近的涡度强度降低,干燥设备风机效率总体降低,相应的泄漏面积和泄漏流量增大。轴向速度分布可以反映转子叶片流道内的流动能力和分离尾迹区的特征。因此,转子叶片出口轴向速度分布的径向分布如图6所示,用于分析流量。由于叶根和叶顶端壁附件的附面层较厚,导致流体流过该区域后的轴向速度较小,而叶顶附件又因泄漏存在使轴向速度进一步减小。



商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网