聊城离心排风机规格尺寸「多图」
作者:山东冠熙2021/11/12 15:17:39














通过数值计算方法,观察离心风机蜗壳内部的流动情况,通过收缩蜗壳180°~360°之间的型线,改进后的离心风机出口静压,出口全压和风机效率都有所提高。

Beena D. Baloni等采用实验方法,对具有相同叶轮,离心排风机蜗壳采用等环量法与等平均速度法成型的离心风机内部流动特性进行了研究,结果表明采用等平均速度法成型的蜗壳内部气流的速度梯度与压力梯度都小于采用等环量法成型的蜗壳,内部流动情况更优。(1)对引风机和脱硫增压风机的风量、风压和系统阻力进行了试验。

离心排风机应用广泛,但由于其叶片结构复杂、叶道较长导致其内部流动损失较大,效率较低。通过数值计算方法,观察离心风机蜗壳内部的流动情况,通过收缩蜗壳180°~360°之间的型线,改进后的离心风机出口静压,出口全压和风机效率都有所提高。复杂的叶片结构导致其加工工艺复杂,在批量生产时叶片模具制造的成本较大,一般企业都只单件生产甚至不生产,导致产品的供不应求。因此本文采用数值计算得方法,找到离心排风机内部流动损失的根源,改善风机内部的流动特性,提高风机的综合性能。


根据以上分析,本文对斜槽式离心风机进行了改进设计,从改善风机内部流动特性出发,首先在原型机的基础上进行改进,而后根据风机的现代设计方法,以合作单位的性能指标为设计条件,完成风机的设计工作,具体的内容如下:

本文通过查阅大量离心风机优化设计的文献,深入理解了风机的不同结构参数对风机内部流动特性的影响,并采用数值计算方法

(CFD)对风机原型机进行了数值模拟,通过观察风机不同截面处的等值线图和流线图,对风机的内部流动特性进行了分析,为离心风机的改进提供思路。因此,采用非结构化网格划分进气道上部,并对靠近壁面和叶片的网格进行加密。以提高离心排风机的效率和增大其全压为改进目标,对风机的短叶片长度、增大风机叶轮的旋转直径和改变风机蜗壳蜗舌与叶轮的间隙,对风机性能的影响进行了研究。











实际上,离心排风机相同部件的各类丢失中,甚至不同部件的丢失之间都是彼此相关,彼此影响的。经过考虑各部件丢失之间的相关联系,并以很多的实验资料和现代计算方法为基础,得到了具有理论根据和实际使用价值的风机及丢失模型。为了保证离心风机工作的可靠性,风机的前盖与集流器之间和蜗壳与转轴之间,都要保持必定的空隙。这些空隙都将引起风机的走漏丢失,走漏丢失一般包含外走漏与内走漏两种。一般情况下,称蜗壳与转轴之间的走漏为外走漏,但由于外走漏的值比较小,一般忽略不计。目前,在现有的离心风机损失模型中,不同部件的各种损失(如进气室损失、叶轮进口气流从轴向到径向的损失、叶轮通道损失、蜗壳损失、变工况下叶片进口冲击损失)是***计算的。


气体流经离心排风机叶轮前盘与集流器之间的走漏形成循环活动,白白消耗掉叶轮的能量。这种丢失称为内走漏丢失。选用数值计算方法对离心风机的走漏丢失特性进行了研究,经过选用A型和B型防涡圈,不仅降低了旋涡的选装强度,还有用的降低了风机的走漏丢失。并且在两种防涡圈中,B型的防涡圈节能作用更好。因此,本文通过改变离心排风机叶轮的结构参数和数值计算方法,对改进后的风机性能进行了评价和分析。

轮盘冲突丢失

离心排风机叶轮旋转时,叶轮的前盘和后盘外外表与其周围的气体发生冲突。因而发生的丢失,

称为轮盘冲突丢失。这种内部运动引起的能量丢失,尽管具有流力丢失的特色,可是这种丢失只造成功率的损耗,并不会降低风机的压力,所以叫做轮盘丢失或许内部机械损失。





离心排风机的设计方法,对所设计风机的稳态计算结果进行了分析。在离心风机设计完成后,根据具体设计参数建立了离心风机的三维模型。第三章采用样机的数值计算方法,对设计工况下的风机进行了计算。原型风机和斜槽风机的比转速分别为13.89和11.08。根据不同的比转速,可对风机进行分类。可以看出,所设计的风机和原型风机属于不同的系列,但在全压、效率等方面都有所提高。可以证明第四节风机的设计方法是正确合理的。通过对设计离心排风机的数值计算参数与风机初始设计值的比较,可以看出设计风机的总压值高于设计目标,效率为68%,效率比原型风机高19.9%,总压值由4626提高到4626。PA至5257PA,均满足合作单位的性能要求。流量损失会降低离心排风机的实际压力,泄漏损失会降低风机的流量,叶轮损失和机械损失会导致风机附加功率的增加,从而降低风机的效率。


可以看出,离心排风机样机长、短叶片的吸力面不仅产生分离现象,而且产生两个涡,设计工况下设计风机长、短叶片的吸力面存在一些分离现象,但没有明显的分离现象。产生了漩涡。通过比较两种方法的流线图可以看出,所设计的风机的整体流动性能得到了很大的提高,设计的离心排风机的效率得到了很大的提高。大型离心风机性能预测方法,采用LSSVM算法和离心排风机历史运行数据建立性能预测模型,离心排风机采用LHS方法保证建模数据在建模区间内均匀分布,提高模型的通用性。


设计风机的瞬态计算

为了后期计算风机内部的气动噪声,本文对离心风机内部流场采用瞬态的计算方法进行了数值计算。下面详细介绍风机的瞬态计算过程。


离心排风机瞬态计算收敛性判断

瞬态计算过程中,每一个时间步内相当于计算一个稳态过程。因此在每一个时间步内都需要保证计算达到收敛。瞬态计算过程中存在内迭代的概念,内迭代与稳态求解的的迭代具有相同的原理。内迭代次数可以在模型树节点Run  Calculation面板通过参数Max Iteration/Time Step来设置。同时,为了提高风机出口挡板的密封性,对风机出口挡板、进口挡板和执行机构进行更换,以提高风机的效率。




商户名称:山东冠熙环保设备有限公司

版权所有©2025 产品网