离心引风机的设计原理是根据单调加速度原理确定圆形和圆锥形集热器的收缩率。为了减少集热器内空气的流动损失,集热器的等效收缩角应为40~60。(离心引风机集热器喉部,即图4.8所示的B点,不宜过快,即其直径不宜过小,否则集热器减速段扩散角过大。离心引风机锥形收割机扩散段的减速规律应与叶轮进口气流的减速规律基本一致。在风机设计中,根据相似原理,可以选择现有的***风机或经过试验的机型进行相似设计,以保证风机达到预期效果。此外,减速段的外形应与靠近叶轮入口的前叶轮的外形相匹配。稳态(稳态)通常是指计算域中任何物理量的分布不随时间变化。
离心引风机瞬态问题是指物理量在计算域中的分布随时间变化的问题。实际中没有稳定性,但对于某些工程问题,可采用稳态近似计算。在近似稳态计算中,通常忽略瞬态波动或在计算模型中引入全局时间平均值以消除瞬态效应。稳态计算简化了计算模型,但在实际工程计算中,稳态计算模型在特定场合的应用,可以减少对计算资源的需求,方便计算值的后处理。边界及初始条件1)集热器入口设为入口边界,叶轮出口设为出口边界,叶轮前盘、后盘和叶片的实体壁设为实体壁,转轮边界面与下一周期转轮边界面之间的连接设为PE。考虑时间效应,离心引风机瞬态计算模型可以在计算域内求解物理量随时间的变化。在某些问题中,必须采用瞬态数值计算,如气动问题中的涡脱落计算、旋转机械中的静动态干扰、失速和喘振、多相流问题中的自由面和气泡动力学、网格问题、瞬态传热问题等。
随着***环保政策的深化,为了响应***环保节能政策,在线生产锅炉的环保指标必须满足超低排放要求。因此,对我厂脱硝系统进行了改造:将原SNCR+SCR联合脱硝方式改为SCR脱硝方式,改造后取消原增压风机,原引风机出力不能满足机组满负荷要求。因此,计划对两台引风机进行改造。在现有离心引风机的基础上,通过对引风机叶轮的改造,在不进行电机技术改造的情况下,对引风机进行技术改造,提高引风机的出力,以满足反硝化和静电沉淀的总阻力。变压器取消增压风机后,实现离心引风机的节能降耗的目的。随着***环保政策的不断深入,生产锅炉的环保指标必须满足超低排放要求。研究结果表明,通过考虑气体粘性,对蜗壳型线进行改进,可以减小蜗壳内的流动损失,提高风机的效率。我厂对原有的反硝化系统和静电沉淀进行了改造。改造后,原有引风机不能满足机组满负荷运行的要求。工作人员进行了技术探讨,确定了离心引风机、脱硫增压风机的风量、风压及系统抗延长性能。后根据试验后的实测数据,确定了引风机和电动机的选型设计,包括风机设计参数。为了提高风机出口压力、风机输出、满足机组满负荷要求和取消增压风机运行,设计了数计算、离心引风机选型、风机电机基础校核、风机改造后流场计算、电机参数选择等。
离心引风机基于LSSVM算法建立了矿井离心风机性能预测模型。采用LHS方法对矿用离心风机进行了实验数据采集,进一步降低了建模成本,提高了建模精度。通过实例验证了该方法的有效性。然而,在实际生产中也有许多类似的离心风机。尽管它们的大小、结构和速度不同,但它们遵循相似的机制。因此,如何利用现有的相似离心风机数据建立现有的离心风机模型成为下一个研究方向。根据天蝎科鱼类的运动姿态和涡流特性,设计了一种离心引风机叶片,用于模拟鱼类的弯曲姿态。近年来,随着人工智能算法的发展,数据驱动建模方法逐渐应用于风机性能预测。离心引风机采用数值模拟的方法,研究了传统的单圆弧原型叶片和鱼状叶片对多翼离心风机气动性能和噪声的影响。通过可视化分析,发现在鱼状叶片的过流过程中,涡流强度明显小于原型风机,流场分布更加均匀。鱼状叶片的使用有效地减小了风机蜗壳舌处的压力波动,削弱了叶片与蜗壳舌间的非定常相互作用。风机气动噪声计算分析结果表明,单弧原型叶片的风机噪声频率分布在中低频段,离心引风机鱼形叶片的风机噪声频率主要分布在中频段,说明离心引风机噪声频率分布规律和噪声特性两个风扇的启动路径不同。数值计算结果表明,鱼状叶片多叶离心风机的气动性能有了明显的改善,风量增加了12.5%,效率提高了5.65%,测点平均噪声降低了2.78db。
版权所有©2025 产品网