烘干房循环风机价格合理「山东冠熙」
作者:山东冠熙2021/11/9 2:38:10








烘干房循环风机是叶片式流动机械,其产生的噪声包括空气动力性噪声、气固耦合噪声、机械噪声、电磁噪声,其中空气动力性噪声是大风量轴流风机的主要噪声。从粮食上层的冷却效果来看,通风后温度高,主要是由于夏季粮食的储存。空气动力性噪声是叶片旋转引起空气振动产生的。烘干房循环风机旋转噪声和涡流噪声是两种不同的气动噪声。旋转噪声是当大风量轴流风机叶片旋转推动空气流动时,均匀分布的叶片与周围空气相互作用,引起气体压力脉冲而产生离散噪声;旋涡噪声是叶片表面上的气流形成紊流附面层后,随着压力的增加,从叶片上旋涡脱离,引起脉动产生的宽频噪声。

烘干房循环风机噪声单频的噪声较大值存在于低频阶段,且噪声在2500Hz 以后噪声频谱没有明显波动。改造方案成组减少或者增加导叶片,其中导叶数目减少为方案一至方案三,导叶数目增加为方案四至方案六。有研究表明,100Hz 以下的噪声,大气吸收作用微弱,在10km 的传播范围内,噪声几乎不衰减;400Hz 的噪声在大气相对湿度为50%,温度为293K 情况下,5km 的传播范围衰减3dB。由此可见,低频噪声随传播距离的变化不大。

本公司采用多功能数字环境噪声分析仪对某项目上大风量轴流风机声压级进行测量,结果可知,烘干房循环风机的等效连续A 声级约为87dB(A),并且噪声在63Hz 单频时峰值达98dB(A),在125Hz 单频时噪声峰值达96dB(A)。湍流模型采用Les模型,子格子模型采用***agorinsky-Lilly模型。该结果证实了轴流风机单频噪声较大值在低频段,主要噪声为低频噪声。



烘干房循环风机噪声治理结果

采取噪声治理措施前后,大风量轴流风机进风口处噪声值对比结果如图5 所示。由图5 可知,治理前后进风口处噪声值在各倍频程处有相似的升降趋势。并且,噪声在63Hz 和125Hz 处均有明显峰值。治理后进风口处的噪声值有明显降低。由于风机内部流动是复杂的三维黏性流,完全采用实验方法或三维商业软件求解其全工况下的性能费时费力且成本较高。在63Hz 处降噪量约30dB,通过治理前后噪声的A计权测量值对比,治理后烘干房循环风机进风口噪声降噪量为27dB(A)。

山东冠熙风机所采用的烘干房循环风机弯头加折板式消声器的组合消声结构,针对该项目中大风量轴流风机的噪声消声量能够达到27dB(A),并且对低频噪声具有较好的消声效果。弯头加折板式消声器的组合消声结构,不仅能够有效的改变气流流通方向,增加通道长度,提高空气动力性噪声的消声量,而且节约空间,组合形式灵活,具有广泛的应用前景。轴承温度是衡量风机安全运行的一个指标,因为烘干房循环风机使用的轴承是进口的,如FAG或SKF。

烘干房循环风机在同一转速下,由于动叶安装角的变化,因此其工作范围是一组特性曲线。由于风机内部流动是复杂的三维黏性流,完全采用实验方法或三维商业软件求解其全工况下的性能费时费力且成本较高; 同时在风机工况改变,需要调整其转速和动叶角度使其满足风压和效率的要求,因此,快速准确预测出轴流风机在安装角变化时的气动性能够提高缩短设计周期和风机运行效率,具有极为重要的工程应用价值。烘干房循环风机在同一转速下,由于动叶安装角的变化,因此其工作范围是一组特性曲线。



穿孔模型的烘干房循环风机叶片穿孔主要包括孔径、孔位分布、孔倾角等参数。当穿孔孔径过大时,烘干房循环风机叶片工作面内的气流流向非工作面,大大降低了风机的静特性。当孔径过小时,通过孔的气流不足以***涡流。本文将孔径设置为准3毫米。合理的穿孔位置能有效地***涡流的产生。排孔位于叶片前缘前方,使分离点沿流动方向向后移动;叶片中部不穿孔,以保证叶片能提供足够的升力;叶片后缘设有三排孔,以***分离的产生。区带。采用数值计算方法研究的对旋轴流风机几何参数为:叶轮直径约800mm,额定转速2900r/s,两级叶轮叶片数分别为14和10。数值模拟采用Fluent软件进行。在模拟之前,网格被划分。计算区域包括入口区域、管道区域、烘干房循环风机的旋转叶轮区域和出口区域。整个网格划分为三个步骤:稳态、非稳态模拟和噪声模拟。通常,在测量水平、垂直和轴向位置的较大振动位置时,应考虑到振动源。将RNGK-E模型用于稳态模拟,是对标准K-E模型的改进。旋转流场的计算更准确,更适合于边界层流动。采用简单算法实现了速度与压力的耦合。边界条件为速度入口和自由出口,实体壁不滑动,采用多旋转坐标系MRF实现了动、静界面之间的数据传输。


商户名称:山东冠熙环保设备有限公司

版权所有©2024 产品网