航天是高i端制造技术的集中体现。就测量检测来说,无论是对于组件的测绘,还是零部件的检测,不允许有任何的错误,对测量检测的要求可以用苛刻来形容。而在加工制造方面,减重和安全是两个终i极目标,要求不断优化组件设计和材料性能,做到轻量化
航空航天领域检测零件外形以往多使用接触法,如三坐标测量机、特殊的量具等,使用贴靠的方法检测零件的曲面形状。对于塑料模和压铸模,还需要考虑合理的浇注系统、熔融塑料或金属流动状态、进入型腔的位置与方向,即做好流道系统设计。这种方法效率不高,受人为因素影响较大,容易出错,存在一定的缺陷。三维扫描或三维光学测量技术则可以做到无损检测、复杂型面全尺寸测量检测、加工余量智能化检测等,便捷。
3D打印在航空航天方面的应用已经趋于成熟,并且占比越来越大,成为3D打印应用的主要市场。当传统打印遇上3D打印目前来看3D打印技术已经在***范围内拉开制造方式变革的序幕。美国宇航局NASA在外太空探索计划中,大量采用了3D打印技术,从火箭部件到飞船及外星球探测器,甚至是众人关心的宇航员吃什么,NASA都用到了3D打印技术来实现。中国的“神十”飞船,我国第i一艘航母“辽宁号”的舰载机型“歼-15”,美国的F-35战斗机,部分零件就是3D打印技术制造而成的。
有了的三维测量检测技术和高i端的3D打印技术,飞机将会越来越轻,也越来越安全。
3D打印技术的优势
制造技能门槛降低:传统的制造机器需要熟练的***人员进行机器调整和校准,培养一个娴熟的工人往往需要几年的时间。3D打印机技术原理3D打印机又称三维打印机(3DP),是一种累积制造技术,即快速成形技术的一种机器,它是一种数字模型文件为基础,运用特殊蜡材、粉末状金属或塑料等可粘合材料,通过打印一层层的粘合材料来制造三维的物体。而3D打印机所需要的操作技能将比传统设备少很多,因此3D打印的出现将显著降低生产技能的门槛。这种摆脱原来高门槛的非技能制造业,将进一步引导出众多新的商业模式,并能在远程环境或极端情况下为人们提供打印服务。
版权所有©2025 产品网