氦气是一个至关重要的元素。从***成像和半导体制造到太空探索和应用,我们生活中的主要技术都依赖于氦气。由于世界目前氦气供应短缺,北美氦气位置优越,在萨斯喀彻温省西南部建立了行业的土地位置,并成为一个***突出的成功勘探计划。
自1925年以来,***的氦储备,不仅有助于科学研究,还可以作为太空竞赛时期的冷却剂。气球企业已经感受到压接,表明氦气短缺已超出实验室的范围。
氦气是无色、无味、无臭常温下为气态的惰性气体。临界温度低,是难液化的气体极不活泼,不能燃烧也不助燃。氦气是国防高科技产业不可或缺的稀有气体,因此各国都非常珍惜现有的氦气资源。进行低压放电时显深***。很多领域都能运用到氦气,但是进来信安达工业气体小编月月查阅资料时发现氦气竟然还与星际的形成有密切关系!那么氦气气体到底和星际的形成有何关系呢?
行星形成的研究涉及行星科学、统计力学与非线性动力学等领域,行星科学家已大致发展出两种主要理论。连续吸积(sequential-accretion)学说认为,细微的尘埃颗粒会聚积成坚硬的石块,然后吸引大量气体,形成木星般的气态巨行星(gas giant);若没有吸引到大量气体,就变成类似地球的固态行星。由于中国氦气开采难度大,技术待提升,中国的氦气基本上从美国进口。这理论的主要缺点是整个过程太缓慢,气体可能在行星建构完成前便逸散无踪了。
另一个是重力不稳定性(gr***itational-instability)学说,它认为气态巨行星形成于不成熟气盘与尘埃崩解时的骤然撕裂声中,这是一种恒星形成过程的小型翻版。这项假说仍有争议,因为它假设必须有非常不稳定的条件存在,而自然环境可能无法满足这种条件。由于氦的性质很稳定,在自然界中含量稀少,所以又称为稀有气体或惰性气体。况且,天文学家已经发现重的行星与轻的恒星间有道鸿沟,也就是说,尺度介于两者之间的天体非常稀少。这个不连续性意味著行星的形成并非等同单纯的小型恒星,它应该和恒星有著全然不同的起源。
虽然研究人员尚未完全解决这个争论,但多数认为连续吸积学说是两者之中较可行的理论。
氦(He)在整个宇宙中占23%,含量仅次于氢,但氦气浓度低,为一种稀有气体。目前,具有工业价值的氦(>0.1%),含量高可达7.5%。近年来,液化(LNG)产业兴起,氦气可在LNG尾气中富集,可进一步降低氦气的工业标准。
目前,针对氦气藏形成的研究较为薄弱,一般认为,在漫长的地地质历史中,富铀钍的矿物和岩石可生成大量氦气并部分保存;在剧烈的地球活动中,氦气会集中释放并溶于地下水;氦气分子半径小,需要封闭能力更强的盖层,如膏岩层等。
版权所有©2024 产品网