天然离子交换
离子交换法
离子交换实际是不溶性离子化合物(离子交换剂) 上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程。用离子交换法去除氨氮时,常用离子交换剂沸石、活性炭等,也有研究采用合成树脂。但天然离子交换剂价格便宜且再生容易;采用合成树脂,预处理工序和再生系统均较复杂,且树脂寿命短,应用上受一定限制。
肖举强等证明活化沸石去除氨氮的效果优于活性炭。陶颖等采用天然沸石去除污水中氨氮效果明显,成功将污水深度处理。刘玉亮等的静态、动态和再生实验结果表明,斜发沸石静态饱和吸附量为3. 1 g/ 100 g ,再生后有效寿命可达140 h 以上。Rozic 等也进行了用沸石和粘土类矿物去除氨氮的试验。研究表明,用天然沸石为离子交换剂时,其对氨氮的去除能力与水中氨氮的初始质量浓度有关,在初始质量浓度小于100 mg/L 时,氨氮的去除率可以达到60. 0 %以上,且随初始质量浓度的降低去除率增加,当初始质量浓度超过100 mg/L 时,氨氮的去除率迅速下降。
高氨氮废水处理在应用方面的主要体现
1.大量的酸性废水,现一般采取氨法中和,得到铵盐。但经蒸发结晶之后的一些冷凝水,仍然存在一些氨氮无法满足排放或者回用标准。
2.染料或者中间体在合成过程之中,一般常用到一些有机胺、含硝基、酰胺类、含氮的杂环、(硫)、偶氮类、叠氮类等化合物,经过复杂的有机相反应,或者在废水相中经过一系列酸化、水解、氨化反应、微生物酶等作用下,得到了以离子形态存在于体系中的游离铵。
高氨氮废水处理的氨氮废水来源是什么
含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。
人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。
氨氮污水氨氮超标的原因
1、回流比
生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%左右。
2、水力停留时间
生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8小时以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。
污水处理等级通常及处理方法
污水处理等级
通常按照污水处理的等级将污水处理分为三个等级,分别一级、二级和三级处理等。(1)一级处理主要是消除污水中的悬浮颗粒物和固体物质等,一级处理可以采用物理处理法进行处理,通过可以达到30%的处理,满足不了排放的标准和要求,一般为二级处理的前奏。(2)二级处理主要是消除污水中的有机污染物或者溶解状态的物质,包括BOD.COD物质,消除90%以上的污染,满足排放要求。(3)三级处理属于高等级的污水处理,将污水中的可溶性无机物和氮磷等元素消除掉,具体的可以采用砂率法、混凝沉淀法和活性炭吸附法等,另外还可以使用电渗分析法和离子交换法等技术来处理。
版权所有©2025 产品网