铝阳极氧化及铝合金硬质阳极氧化后,可获得的阳极氧化膜层具有以下特点:
1、色泽:褐色,深褐色,***,黑色。阳极氧化膜层愈厚,电解温度愈低,颜色愈深。
2、厚度:阳极氧化膜层厚度可达250μm左右。
3、硬度:阳极氧化膜厚度非常高,在铝合金上可达400~600HV,在纯铝上可达1500HV,不仅硬度高,而且耐磨性能好。
4、抗热:硬质阳极氧化膜的熔点可达2050℃,是的耐热材料。
5、绝缘:硬质阳极氧化膜的电阻率极大,它的击穿电压大于200V。
6、耐蚀:在大气中具有较高的抗蚀能力,在大于3%N***盐雾中,能经数千小时不腐蚀。
7、结合能力:阳极氧化膜层与基体具有牢固的结合力。
铝合金铬酸硬质氧化膜质量的优劣及其抗蚀防护性能的好坏主要取决于铝合金成分、膜层厚度、硬质氧化处理工艺条件f如温度、电流密度、使用水质及硬质氧化后的填充封闭工艺等等。因此,要避免类似本文出现的硬质氧化膜失效现象,就必须从细节把关,严格规范生产操作程序,杜绝铝合金硬质氧化工序后产生的酸性液体残留,以防止阳极化膜层受到腐蚀***。
1、***浓度:通常采用15%~20%。浓度升高,膜的溶解速度加大,膜的生长速度降低,膜的孔隙率高,吸附力强,富有弹性,染色性好(易于染深色),但硬度,耐磨性略差;而降低***浓度,则氧化膜生长速度加快,膜的孔隙少,硬度高,耐磨性好。所以,硬质氧化用于防护,装饰及纯装饰加工时,多使用允许浓度的上限,即20%浓度的***做电解液。
2、电流密度:在一定限度内,电流密度升高,膜生长速度升高,硬质氧化时间缩短,生成膜的孔隙多,易于着色,且硬度和耐磨性升高;电流密度过高,则会因焦耳热的影响,使零件表面过热和局部溶液温度升高,膜的溶解速度升高,且有烧毁零件的可能;电流密度过低,则膜生长速度缓慢,但生成的膜较致密,硬度和耐磨性降低。
3、氧化时间:氧化时间的选择,取决于电解液浓度,温度,阳极电流密度和所需要的膜厚。相同条件下,当电流密度恒定时,膜的生长速度与氧化时间成正比;但当膜生长到一定厚度时,由于膜电阻升高,影响导电能力,而且由于温升,膜的溶解速度增大,所以膜的生长速度会逐渐降低,到后不再增加。
4、搅拌和移动:可促使电解液对流,强化冷却效果,保证溶液温度的均匀性,不会造成因金属局部升温而导致氧化膜的质量下降。
5、铝合金成分:一般来说,铝金属中的其它元素使膜的质量下降,且得到的氧化膜没有纯铝上得到的厚,硬度也低,不同成分的铝合金,在进行硬质氧化处理时要注意不能同槽进行。
对于螺孔等部位事后无法采用机械方法进行修复的,则在硬质氧化之前需经保护处理,以免因无法装配而造成废品。
对于有均匀度和光洁度要求的部位,事后尚需进行研磨,这一尺寸的损耗事先亦要做到心中有数。当硬质阳极氧化膜的厚度要求在100μm时,制件的单面实际尺寸相当于增加近50μm左右。但随着本身材料纯度的不同和工艺条件的差异,实际以取得可靠数据尺寸的增厚值也会有差别,必要时需经试验,然后决定公差配合余量。
如何防止阳极氧化过程中产生边角效应?因为角部的膜不可能三维生长,膜层越厚越严重。为此厚层阳极氧化膜的角部半径应该取大一些。而纯铝成膜初期不显颜色,当膜层的厚度逐渐增厚时,制件表面的颜色也会逐渐由无色变为浅褐色至褐色。
版权所有©2025 产品网