马达发展历程
19世纪50年代末期,低速大扭矩液压马达是由油泵的一个定转子部件发展而来的,这个部件由一个内齿圈和一个与之相配的齿轮或转子组成。内齿圈与壳体固定能接在一起,从油口进入的油推动转子绕一个中心点公转。这种缓慢旋转的转子通过花键轴驱动输出成为摆线液压马达。工作原理为通过通电线圈在磁场中受力转动带动起动机转子旋转,转子上的小齿轮带动发动机飞轮旋转。这种摆线马达问世后,经过几十年演化,另一种概念的马达也开始形成。这种马达在内置的齿圈中安装了滚子.具有滚子的马达能提供较高的启动与运行扭矩,滚子减少了摩擦,因而提高了效率,即使在很低的转速下输出轴也能产生稳定的输出。通过改变输入输出流量的方向使马达迅速换向,并在两个方向产生等价值的扭矩。各系列的马达都有各种排量的选者,以满足各种速度和扭矩的要求。
直流电机的工作原理
直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。如果燃油泵工作正常,则应检查其控制电路,主要包括***丝、EFI主继电器、燃油泵继电器、电阻器以及各配线和接线器。
直流发电机的工作原理就是把电枢线圈中感应的交变电动势,
靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
无刷力矩电动机
无刷力矩电动机的外特性和用途均与直流力矩电动机相同。在控制系统中,它也可直接驱动机械负载,常工作于低速,可长期堵转工作。
无刷力矩电动机工作原理与永磁无刷电动机完全相同,也有矩形波驱动和正弦波驱动两种工作方式,只不过它的工作转速通常在每分钟数百转之内,在设计上追求堵转下有较大输出力矩和尽可能小的输入功率,追求力矩/质量比。
由于需要较低的额定转速和较大的输出力矩,无刷力矩电动机常设计成有较多的极对数和较大的直径/长度比;和直流力矩电动机相仿,常采用分装式结构。提出采用飞轮机构与液压蓄能器相结合的方式控制液压马达排量的方法来实现混合动力挖掘机的能量回收和控制策略,但成本高。无刷直流力矩电动机产品多采用三相绕组,转子为一个有大直径内孔的环行支架,其上粘贴永磁体。位置传感器可采用霍尔传感器、光电编码器和旋转变压器等。
为了保证超低速下工作的平稳性,应更加重视转矩波动问题。无刷力矩电动机也可采用高磁能积稀土永磁材料,定子采用无槽电枢绕组,以完全消除定子铁心齿槽引起的转矩波动。
版权所有©2024 产品网