PECVD(Pulse Enhanced Chemical Vaporized Deition,电浆辅助化学气相沉积)工法并配合密闭抽真空设备,所以纳米等级的涂层颗粒可以顺着整机产品的微小缝隙飘进并附着于整机产品内部的大多数角落位置,也因为涂层的缝隙比水分子还小,所以可以起到隔绝湿气对电子产品的影响。另外,由于涂层的厚度大概有5-50nm,弹簧类零件(如连接器)只要经过摩擦就可以轻易的刮除这些涂层,达到电气接触的目的。
随着激光技术的发展,对薄膜的反射率和透射率有了不同的要求,这促进了多层高反射薄膜和宽带抗反射薄膜的发展。对于各种应用,高反射膜用于制造偏振反射膜、分色膜、发光膜和干涉滤光片等。光学零件表面镀膜后,光在膜层上多次反射透射,形成多光束干涉。通过控制薄膜层的折射率和厚度,可以获得不同的强度分布,这就是干涉涂层。
表面科学是在固体物理等许多科学基础上发展起来的新科学,其研究对象是各种各样的表面。真空镀膜技术为制造各种各样的清洁表面提供了手段。特别是20世纪70年代在真空镀膜基础上发展起来的分子束外延技术,用他不值可以特备可控制的超薄薄膜、原子级平整度的表面、上百层的叠加膜,而且还可以控制薄膜的成分和亚比。这些薄膜的制备均为科学的研究和发展提供了充分的条件。
真空搜膜技术在其他科学领域中的应用亦很广泛。例如,电子显微镜的标本必须经过真空镀膜处理才能观察﹔激光器需要镀上精密控制的光学膜层才能使用;太阳能利用也与真空镀膜技术息息相关。
派瑞林(Parylene)可以增加铁氧体等磁性材料的介电性及耐高压性能,可以克服普通环氧树脂喷涂等其他涂层工艺处理后不耐磨,不耐酸碱等方面的严重缺陷。其工艺特点:派瑞林(Parylene)涂层物料经蒸发室汽化后进入裂解室后裂解为气体,气体进入沉积室,通过沉积室,即物体表面均匀包覆所述派瑞林层。派瑞林(Parylene)真空气相沉积工艺和磁体覆膜工艺,降低磁体表面的氧化能力,提高磁体的抗蚀性,相比电镀磁体工艺,该镀膜工艺使磁通损失率降低至现有覆膜工艺的50%,且降低了毛坯生产的成本。从而降低企业生产成本,提高产品性能。