高温纳米涂层诚信企业推荐 菱威真空镀膜派瑞林
作者:菱威纳米2021/11/18 18:32:19






       派瑞林沉积过程是将二环二聚体加热气化后再经高温裂解成游离的气相分子,并在真空、室温条件下瞬间吸附在基板上聚合成膜,形成气密性很好的保护膜。由于涂料中不含溶剂,所以克服了以往使用的溶剂型涂料在烘干过程中因溶剂挥发而必然会留下许多细微的缺点,可以提供真正的无的保护膜。

       派瑞林涂膜是采用独特的真空气相沉积工艺制备,是由活性小分子在基材表面“生长”出的敷形的聚合物薄膜涂层。由于是在真空条件下形成的,所以该工艺的的较大特点是“无孔不入”,它能涂敷到各种形状的表面,包括尖锐的棱边、裂缝和内表面。




       20世纪60年代美国联合碳化物公司推出了Parylene派瑞林系列新型高分子敷型涂层材料,由于其优异的阻隔性能在防潮、防霉、防盐雾的三防涂层材料领域得到广泛应用。派瑞林原料C型、N型、D型、F型、AF4型是派瑞林聚合物的新一代衍生物,包括苯环取代和亚取代两类, 氟原子的引入能够较好地改善薄膜的电学性能和热稳定性。Parylene系列衍生物的研究主要集中在单体环二体的合成方法及薄膜的特性研究,有关薄膜制备方法的报道较少,曾有采用液态前驱体进行薄膜制备的文献报道。


原子层沉积是通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附并反应而形成沉积膜的一种方法(技术)。当前驱体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。在前驱体脉冲之间需要用惰性气体对原子层沉积反应器进行清洗。由此可知沉积反应前驱体物质能否在被沉积材料表面化学吸附是实现原子层沉积的关键。气相物质在基体材料的表面吸附特征可以看出,任何气相物质在材料表面都可以进行物理吸附,但是要实现在材料表面的化学吸附必须具有一定的活化能,因此能否实现原子层沉积,选择合适的反应前驱体物质是很重要的。


       与化学吸附自限制过程不同,顺次反应自限制原子层沉积过程是通过活性前驱体物质与活性基体材料表面化学反应来驱动的。这样得到的沉积薄膜是由于前驱体与基体材料间的化学反应形成的。图a和b分别给出了这两种自限制反应过程的示意图。由图可知,化学吸附自限制过程的是由吸附前驱体1(ML2)与前驱体2(AN2)直接反应生成MA原子层(薄膜构成),主要反应可以以方程式⑴表示。对于顺次反应自限制过程首先是活化剂(AN)活化基体材料表面;然后注入的前驱体1(ML2)在活化的基体材料表面反应形成吸附中间体(AML),这可以用反应方程式⑵表示。反应⑵随着活化剂AN的反应消耗而自动终止,具有自限制性。当沉积反应前驱体2(AN2)注入反应器后,就会与上述的吸附中间体反应并生成沉积原子层。


商户名称:东莞菱威纳米科技有限公司

版权所有©2025 产品网