从1749年,美国科学家Benjamin Franklin(本杰明·富兰克林)等经过科学实验,建立了雷电理论,并发明了避雷针,这就是早的防雷产品。此阶段的防雷装置比较简单,只有接闪器、引下线和接地体,也就是现在所说的直击雷。然后,随着电的普及使用,高压电线两端的发配电设备遭受过电压损坏的现象越来越严重,经过研究,人们发现这是“感应雷”在作怪,并建立了感应雷和高压反击的理论,弄清了高压雷电波在金属线路传播的规律。感应雷是因为直击雷放电而感应到附近金属导体中,其可以通过两种不同的感应方式,一是静电感应,二是电磁感应。雷电在高压线路上感应电涌,并沿导线传播到线路两端的发配电设备,当这些设备耐压较低时,就会被电涌损坏。基于***电涌、保护线路上设备的目的,到十九世纪末人们发明了避雷器。
项目情况
某数据中心机房位于大楼三层,面积约1000m2。
本工程配电采用TN-S系统,以及***设置接地线(PE)。采用大楼联合接地系统,并且要求接地小于1欧姆。
机房内设有功能性接地和保护性接地,共用一组接地装置。
1、保护接地,防雷保护接地延引大楼的接地。
2、机房内做M网型结构均压等电位网格。机房室内等电位做法在机房地板下沿机柜一周敷设等电位铜带30×3mm2(均压环),铜带用ZR-BVR6mm2与各机房动力配电柜PE排相连,并设置100*0.3mm2铜箔等电位网格。机房动力设备的地线、动力设备的外壳、不带电的金属管道、金属线槽外壳、计算机设备外壳、防静电地板支架、吊顶龙骨、等均须用ZR-BVR6mm2与等电位铜排网络就近可靠相连。机房内设置等电位端子箱,机房内等电位端子箱采用ZR-BVR50mm2的电缆与大楼综合接地端可靠连接。
机房等电位连接
在机房防静电地板下,沿着地面上布置40*3紫铜排,形成闭合环接地汇流母排。将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统设备的外壳,以及对防静电地板下的隔离架进行多点等电位接地就进至汇流排。并采用等电位连接线4-10mm2铜芯线螺栓紧固的线夹作为连接材料。同时在机房找出建筑物主钢筋,经测试确与避雷带连接良好,用14mm镀锌圆钢通过铜铁转换接头将接地汇流母排与之连接起来。形成等电位。采用联合接地网,目的是消除各地网之间的电位差,保证设备不因雷电的反击而损坏。
电气接地系统宜采用TN-S接地系统,PE线与相线分开,机房电源接入处应做重复接地;
机房接地一般分为交流工作接地、直流工作接地、安全工作接地、防雷保护接地。根据《建筑物防雷设计规范》的要求,防雷设计采用共用接地系统时,各接地系统宜共用一组接地装置。信息系统的所有外露导电物(各种箱体、壳体、机架等金属组件)应建立一等电位联结网络。
因此,电气防雷设计应在计算机房设置的等电位联结排,通过引下线与大楼总等电位联结排连接。根据共用接地系统的层层等电位原则,采用结构主钢筋作为引下线,更适用于共用接地系统。另外强调,大楼接地系统的接地电阻不应大于1Ω。
版权所有©2025 产品网