活性炭吸附催化燃烧设备的用途
适用于处理常温、大风量、中低浓度、易挥发的有机废气,可处理种类包括苯类、酮类、酯类、醛类、醚类、烷类及其混合气体。
首先有机废气经干式过滤器去除部分粉尘颗粒物,然后将符合吸附条件的有机废气送入活性炭吸附箱进行吸附净化,净化后的洁净气体由主排风机排入大气中。吸附装置配有备用吸附箱1套,当活性炭吸附饱和后通过控制阀门切换至催化燃烧脱附状态,脱附再生系统采用在线脱附再生,也可采用离线脱附再生,即吸附过程为连续式处理工艺,在备用吸附装置投入使用同时,饱和吸附箱则进行脱附工作,脱附后活性炭箱预备至下次循环使用。
CO催化燃烧的原理
有机废气经鼓风机进入氧化炉,由燃料氧化加热,升温至250~300℃左右。在此温度下,废气里的有机成分在催化剂的作用下被氧化分解为二氧化碳和水,同时,反应后的高温烟气进入特殊结构的陶瓷蓄热体,绝大部分的热量被蓄热体吸收(95%以上),温度降至接近进口的温度后经烟筒排放,达到净化废气的目的,而被虚热提吸收的热量则用于预热后续废气,达到降低反应温度,减少耗材的目的。全部过程由PLC自动控制,可实现一键启动和连锁联动控制。
催化燃烧设备主要分为预处理单元、吸附浓缩单元、催化氧化单元、通风单元与电控单元。有机废气先经过预处理单元,除去废气中的细小粉尘,一来可以防止粉尘堵塞吸附床,二来可以避免粉尘导致催化剂。有机废气经过预处理后经过吸附浓缩单元,经过吸附床的吸附后,一部分被净化的废气通过15米长的烟囱达标排放,吸附床经过一段时间的使用后吸附能力会下降,需要进行脱附处理,脱附下来的有机废气再经过催化燃烧后,氧化分解成CO2和H2O,从而实现有机废气的达标排放
催化燃烧废气处理设备的基本原理及催化剂的种类
一、 催化燃烧废气处理设备的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能。
二、催化燃烧的特点:起燃温度低,节省能源
有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。
煤层气(主要成分为CHO是煤的伴生矿产资源),主要储存在煤层中,大部分吸附在煤基质颗粒的表面,属于规,是一种洁净、能源和化工原料,低浓度煤层气的利用方式不仅导致资源浪费,而且引起大气污染。
为提高低浓度煤层气的利用率,综合现有脱氧技术,由于催化燃烧脱氧具有成本低、条件温和等优点,已逐步引起人们的关注。 催化燃烧法脱氧的本质是富燃贫氧条件下CFL的催化燃烧,该过程发生的主要反应为:CH4+202砩C02+2H20AH:·890·3kJ/mol。脱氧反应特点是:.强放热反应,每消耗1%氧气绝热温升8100℃,煤层气中02体积分数一般在10%左右,若直接催化燃烧脱氧可能导致催化剂床层温度达1000℃以上卩习;@高温下的水蒸汽重整反应和裂解积炭造成损失和催化剂失活;.
煤层气是由生物质转化而来,气源比较复杂常夹杂含硫等气体. 催化燃烧 针对煤层气脱氧的反应特点,可从两方面进行研究,一方面从催化剂本身人手,在催化剂设计开发过程中除了要求催化剂具有较好的脱氧活性外,还要求催化剂具有抗毒性、抗积炭、低温活性好和高温稳定性好等优点。另一方面撤热问题还可以从脱氧工艺着手。脱氧催化剂根据活性组分不同一般分为和非催化剂两类。目前对富氧条件下催化燃烧以净化气体为目的的研究较多,而在贫氧条件下催化燃烧脱氧文献报道较少,多以形式公开。
版权所有©2025 产品网