打开音箱的电源开关,喇叭没有正常开机时“砰”的一声开机声
电脑播放声音都正常,但是使用一段时间之后,就“嗡嗡”直响,耳朵没法忍受。 这例故障同第六例比较相似,不过该功放集成电路还没有彻底损坏,只是当过热时才出现故障。我们可以打开机箱,通过加大功放集成电路的散片的面积来解决。当然,也可以更换质量优良的散热片。 打开音箱的电源开关,喇叭没有正常开机时“砰”的一声开机声。打开音乐播放软件调整音量,音箱也没有任何声音。 这种故障也比较常见:开机后音箱没有声音。那这是否说明音箱坏了呢,该怎么判定?首先,在给音箱加电之前,把音量电位器旋至位置。然后,在打开电源开关时,注意音箱是否有“砰”的一声。如果有,就说明音箱没有什么问题,而且电源是好的。那么,没有声音可能是声卡的驱动程序错误或声音故障,也可能是被静音了或音量过小。再者就是信号线插头没有插接好,或者信号线断线。器材中专门用于功放与音箱问连接的线材,由于音箱线传送的是功率信号,因此在它上面不应有太大的信号损失,这就在客观上要求音箱线具有极为的导电性能,的导电性能要求线材要具备极传送能力。
音响电路PCB数字地和模拟地的隔离
音响电路PCB数字地和模拟地的隔离 如何降低数字信号和模拟信号间的相互干扰呢?大多数音箱都利用是电位器来改变信号的强弱(数字调音电位器除外),从而来进行音量调节和重低音调节的。在设计之前必须了解电磁兼容(EMC)的两个基本原则:个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。在设计中要尽可能避免这两种情况。 有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。在PCB设计中常见的问题就是信号线跨越分割地或电源而产生EMI问题。
分割地的方法还有用吗?
分割地的方法还有用吗?这是在多媒体音箱身上出现次数的故障,相信很多用户都有这样的体会,在使用一段时间后,调节音箱的音量往往会出现这个情况。 在以下三种情况可以用到这种方法:一些要求在与连接的电路和系统之间的漏电流很低;一些工业过程控制设备的输出可能连接到噪声很大而且功率高的机电设备上;另外一种情况就是在PCB的布局受到特定限制时。 在混合信号PCB板上通常有***的数字和模拟电源,能够而且应该采用分割电源面。但是紧邻电源层的信号线不能跨越电源之间的间隙,而所有跨越该间隙的信号线都必须位于紧邻大面积地的电路层上。在有些情况下,将模拟电源以PCB连接线而不是一个面来设计可以避免电源面的分割问题。
如何减少电源变压器对音响功放电路的干扰
由电源变压器产生的磁场干扰一直是困扰放大器质量提高的问题,即使有纯净的电源,来自它的磁场感应也能造成放大器质量严重下降。由于磁屏蔽隔离罩价格高昂(甚至高过了变压器本身,这也是一些进口变压器价格居高的原因),一般的国产机器很少使用磁屏蔽隔离罩切断变压器的磁干扰,许多只是采用简单的铁皮罩隔离,甚至干脆将变压器安装,所以就不能进行有效的磁屏蔽。国外的变压器常采用多层锰游合金和粗铜层相间的结构,把变压器包围起来,一方面利用锰游合金高电阻、高磁导的特性进行磁短路,另一方面通过铜层内引起的涡生一个与干扰磁场相反的磁场抵消磁干扰,因此极大的降低了变压器的磁场外泄。业余条件下是很难得到锰游合金罩的,但也可用1.5毫米的软铁板和铜板制成多层结构的磁屏蔽罩。LC-OFC铜线其纯度比OFC无氧铜略高,但仍在4N的范围内,但导电特性要比OFC铜好。
版权所有©2025 产品网