激光测速雷达
激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用***频移。***频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是***频移。
激光雷达
近年来,一个叫激光雷达的家伙进入了测绘各个领域,很多人对它感觉很陌生,其实不然,他可是老家伙了,我们所熟知的地球与月亮的距离,就是通过激光测距技术实现的。激光测距的原理很简单,就是通过测量激光从发射到月面反射光到达地球的时间,乘以光速再除以二,就是地月距离了。为了保障激光能够很好地反射回来,登月的美国人特地在月球上放置了这样一面反射镜,以保障激光很好地反射回来。 随着GPS和IMU(惯性导航技术)的发展,使精准的即时***、定姿成为可能,很多厂商发现,这家伙用来干测绘非常适合,所以近年来激光雷达就被推到了各位的面前。
由于激光雷达的高分辨率和高灵敏度,高度干扰观测背景,可实现全时观测,可广泛用于环境监测、地形图、高空检测、军事应用、民用车辆和其他领域。
激光雷达是高度定向的。高相干性、气象场强烈的单色性和快速发展。它可用于检测气溶胶、机载云、海洋和平流层风场、温室气体、温度和湿度变化等,提供准确的实时数据,为航空飞行提供支持,提供天气预报。
脉冲法/TOF法
TOF(Time of Fly)测距方法的原理是对探测物体打一束时间极短的激光,通过直接测量激光发射、打到探测物体再返回到探测器的飞行时间,来反推探测器到被测物的距离。这种测距方法类似于传统的微波雷达测距,返回的时延对应的路程是两倍的目标距离。
由于光的飞行速度极快,因此该方案需要一个非常精细的时钟电路(通常是 ps 级,1 ps=10^-3 ns)和脉宽极窄的激光发射电路(通常是 ns 级),因此开发难度和门槛较高,但一般采用 TOF 原理的激光雷达通常都能达到百米级别的探测距离。
版权所有©2024 产品网