为什么产生“混合固态”的概念呢?
因为MEMS扫描镜是一种硅基半导体元器件,属于固态电子元件;但是MEMS扫描镜并不“安分”,内部集成了“可动”的微型镜面;由此可见MEMS扫描镜兼具“固态”和“运动”两种属性,故称为“混合固态”。可以说,MEMS扫描镜是传统机械式LiDAR的革新者,带领LiDAR小型化和低成本化。其取消了机械式激光雷达的机械旋转结构,利用MEMS微振镜,将所有的机械部件集成到单个芯片,利用半导体工艺生产。基于MEMS的固态雷达,是通过微振镜的方式改变单个发射qi的发射角度进行扫描,由此形成一种面阵的扫描视野。目前基于MEMS方式的激光雷达,技术上更容易实现,且价格也比较低廉,有很多的厂家在研发,也因此被主机厂商一致看好。
激光雷达有效地结合了激光光学和大气光学,并协调集成了诸如传统雷达,光机电一体化和计算机计算等技术。 它涵盖了物理学的所有主要领域,是物理学的前沿应用技术之一。 目前,激光雷达家族庞大,分类标准很多,可以根据装备的激光器,功能用途和检测技术等标准进行分类。由于激光雷达的高分辨率和灵敏度以及对观测背景干扰的强大抵抗力,因此可以实现全天候观测,并且可以广泛用于环境监测,地形测绘,高空探测,军事应用,民用车辆 和其他领域。激光雷达具有很强的方向性,较高的相干性和很强的单色性,并且在气象学领域发展迅速。 它可用于检测气溶胶,空气云和雾,海洋和平流层风场,温室气体,温度和湿度变化等,提供准确的实时数据,为飞行提供保护,提供气象研究,天气预报和 大气模型建模数据基础为气候变化和碳循环的研究和预测提供了指导。 例如,为了检测可吸入的颗粒物和云气溶胶浓度,可以使用反向散射激光雷达。 为了测量海洋风场和平流层风场中的风切变和风速,***激光雷达可用于观测温室气体和污染。差分吸收雷达可用于测量气体的浓度和分布。
固态激光雷达
固态激光雷达有很多优势,首先其结构简单、尺寸小,由于不需要旋转部件,可以大大压缩雷达的结构和尺寸,提高使用寿命,并降低成本。其次,机械式激光雷达由于光学结构固定,适配不同车辆往往需要精密调节其位置和角度,固态激光雷达可以通过软件进行调节,大大降低了标定的难度,加快扫描速度快与精度。
不过固态激光雷达也有它相应的缺点,固态意味着激光雷达不能进行360度旋转,只能探测前方。因此要实现扫描,需在不同方向布置多个固态激光雷达。另外,固态激光雷达依然无法解决气候下,无法施展性能的弊端。如果与全天候工作的毫米波雷达相结合的话,必然可以大大提升自动驾驶汽车的探测性能。
固态激光雷达工作原理
固态激光雷达主要是依靠波的反射或接收来探测目标的特性,大多源自三维图像传感器的研究,实际源自红外焦平面成像仪,焦平面探测器的焦平面上排列着感光元件阵列,从远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,终送达监视系统形成图像。
版权所有©2025 产品网