激光雷达将激光光学和大气光学有效结合,协调融合了传统雷达、光机电一体化和电算等前沿技术,对物理学的各大领域都有所涉及,是物理学的前沿应用技术之一。目前激光雷达家族庞大,分类标准也很多,可以按搭载激光器、功能用途、探测技术等标准进行不同的分类。
由于激光雷达的分辨率和灵敏度高、抗观测背景的干扰性强,能够实现全天时观测,可以广泛应用在环境监测、地形测绘、高空探测、军事应用、民用汽车等领域。
固态激光雷达
固态激光雷达有很多优势,首先其结构简单、尺寸小,由于不需要旋转部件,可以大大压缩雷达的结构和尺寸,提高使用寿命,并降低成本。其次,机械式激光雷达由于光学结构固定,适配不同车辆往往需要精密调节其位置和角度,固态激光雷达可以通过软件进行调节,大大降低了标定的难度,加快扫描速度快与精度。
不过固态激光雷达也有它相应的缺点,固态意味着激光雷达不能进行360度旋转,只能探测前方。因此要实现扫描,需在不同方向布置多个固态激光雷达。另外,固态激光雷达依然无法解决气候下,无法施展性能的弊端。如果与全天候工作的毫米波雷达相结合的话,必然可以大大提升自动驾驶汽车的探测性能。
①扫描角有限,固态意味着激光雷达不能进行 360 度旋转,只能探测前方。因此要实现扫描,需在不同方向布置多个(至少前后两个)固态激光雷达。
②旁瓣问题,光栅衍射除了***明纹外还会形成其他明纹,这一问题会让激光在大功率方向以外形成旁瓣,分散激光的能量。
③加工难度高,光学相控阵要求阵列单元尺寸必须不大于半个波长,一般目前激光雷达的工作波长均在 1 微米左右,故阵列单元的尺寸必须不大于 500nm。而且阵列密度越高,能量也越集中,这都提高了对加工精度的要求,需要一定的技术突破。
④接收面大、信噪比差:传统机械雷达只需要很小的接收窗口,但固态激光雷达却需要一整个接收面,因此会引入较多的环境光噪声,增加了扫描解析的难度。
MEMS激光雷达
二维扫描的MEMS微振镜是激光雷达的关键器件,主要可以通过电热效应、静电效应、电磁效应和压电效应驱动。有研究小组通过对电热双压电晶片驱动的微振镜加热,金属铝的形变大于介质硅,从而形成微结构的振动。实验可以施加电压2.3V,获得9°的偏转角。但是电热效应引起微振镜偏转通常响应速度较低,有实验通过施加12mW的电功率,响应速度只有74Hz。电磁效应驱动的MEMS系统需要在内部封装可动磁性物质或者可动线圈产生磁场,如图3所示,通过施加磁场形成洛伦兹力使得线圈产生偏转,从而驱动MEMS振镜偏转,响应速度可以超过10kHz。压电效应需要异质材料的介入,压电材料(PZT)具有、响应速度快等优点。日本研究小组采用电镀的方法在硅上沉积PZT薄膜,加工形成MEMS结构并进行光学扫描,实验获得11.2kHz的响应速度,39°的视场角。静电效应驱动MEMS具有尺寸小、可单片全集成的优点,受到广泛研究。通常,采用静电效应驱动微反射镜的方式需要在真空环境下,以获得更高的驱动效率,10V电压驱动可以实现大约10°的扫描角度。瑞典KTH的研究小组近期验证了一种新方法,如图4所示,通过MEMS改变光栅周期实现衍射光角度偏转,在20V电压驱动下达到5.6°的扫描角度,功率消耗在微瓦量级。
版权所有©2025 产品网