激光雷达的市场规模
不同的应用领域对激光雷达的需求不同,按结构的复杂程度可以分为一维激光雷达、二维激光雷达、三维激光扫描仪、三维激光雷达等,其中二维激光雷达和三维激光雷达能够实现空间建模,可以使用在机器人及无人驾驶之中。
期望大家在选购面阵激光雷达时多一份细心,少一份浮躁,不要错过细节疑问。想要了解更多面阵激光雷达的相关资讯,欢迎拨打网站上的***电话!!!
激光雷达的工作原理
激光雷达的工作原理与雷达非常相近,以激光作为信号源,由激光器发射出的脉冲激光,打到地面的树木、道路、桥梁和建筑物上,引起散射,一部分光波会反射到激光雷达的上,根据激光测距原理计算,就得到从激光雷达到目标点的距离,脉冲激光不断地扫描目标物,就可以得到目标物上全部目标点的数据,用此数据进行成像处理后,就可得到的三维立体图像。
激光雷达是通过发射激光束,再接收从远处物体反射回来的光束,通过测量光束的飞行时间而获得远处物体的距离信息。不过,激光束非常窄,并且它们不会发生散射,因此单束激光雷达脉冲只能感知一个非常小的物体。为了实际应用,激光雷达传感器得进行某种形式的“扫描”。大多数激光雷达传感器会连接到一个旋转它们的驱动马达,一旦激光发射与马达的运动同步,我们就可以知道激光指向的位置,并将前方环境的整体成像合成在一起。因此,激光雷达的视场取决于马达转动它的角度。
激光雷达结构
基于二维MEMS扫描振镜的激光雷达系统采用飞行时间法测距,整体光路采用收发并行光路系统,光源为半导体脉冲激光器,探测器为高灵敏度的APD阵列探测器,激光雷达工作时,控制系统使激光器发出高频率脉冲激光,经由准直系统准直为发散角较小的光束,再控制二维MEMS扫描振镜的偏转角,改变出射光束方向,逐点扫描目标;目标反射的回波光束经过接收光学系统会聚到APD阵列探测器表面,APD阵列探测器上对应的单元被选通以接收光信号。控制系统基于时间飞行法(ToF)准确计算激光飞行往返路径的时间来实现距离测量。
版权所有©2025 产品网