其次,凸轮机构各配件的加工精度和刚性以及装配精度决定了凸轮分割器整体的刚性。适当的刚性强度可以有效避免凸轮分割器运转中的不良振动和噪声。2、凸轮精度高,运转全程预压无背隙、***(±30秒内)、超低噪音,具有特殊加减速运动曲线,故可高速回转运动。凸轮从动件所受激励来自凸轮廓线。凸轮廓线的激励中,除了廓线理论作用外,廓线误差的存在会使机构输出精度、动力学响应受影响。廓线误差取决于加工工艺。配件的刚性不足,会过早产生间隙引起冲击损坏。
另外分度盘滚子的分度误差是影响机构动态性能的主要因素,而滚子之间分度角不均匀,就会给装配带来很大困难,并使机构性能严重恶化。对有分度误差的分度盘,按正常中心距装配,有的分度位置会干涉,避免干涉而増大中心距,在有的分度位置会出现间隙。分割器包括其它设备所使用的电机,在基频以下是恒转矩调速,从0至50Hz的范围,转速可以从0到1440RPM的转速转变。在有激励的含间隙机构实验中,运动副在穿越间隙的一刹那,速度会有突然的变化,导致此时出现加速度冲击,同时产生巨大的碰撞力。这对系统当然不利,会导致运动副所受冲击力增大,使其过早磨损和***,及产生严重振动和噪声。
在工作中,往往是在有很多个摄像机组成的一些电视的监控系统中,使用十六画面分割器,目的就是将多路图像等,在一台监视器上进行轮流显示,这样做就是让监控人员等,看到了所有的监控点的情况等,采用这样的分割器,其实就能够使很多的图像,都在一台监视器上进行显示等
高速凸轮分割器的质量平衡问题的研究
凸轮分割器是一种典型的常用机构。由于它能以简单的结构实现任意复杂的预期运动,并有良好的运动刚性,长期以来被广泛的应用于各种机械。
凸轮分割器处于低速下工作时,可以作为刚性系统处理。但在高速下运动时,由于惯性力引起的构件弹性变形将严重影响机构的真实运动,特别是当激振频率和系统固有频率接近时,弹性变形急剧加大,因此在分析或设计高速凸轮机构时,必须按弹性系统考虑。在摇摆型分割器装置孔调整的时分,要熟知运转参数,要严厉按要求停止速度的调整,由慢到快逐渐完成,直至正常运转。在处理的原则和方法上都与刚性系统有所不同。同时,为了保证机构在高速运转时,具有预期的运动精度,并能持久的保持这种精度,则不仅需要研究其运动学.动力学问题,还涉及材质.加工和摩擦学问题。
加之,近几十年来,由于电子计算机的广泛应用和相邻学科的发展,促使高速凸轮理论的研究不断深入。因此可以说,高速凸轮是一个内容非常丰富,涉及多种学科的综合性问题。
影响高速凸轮分割器动态特性的因素有很多,包括有质心偏心引起的惯性力(离心力),各个零部件阻尼,轴承油膜振荡,温度场,多支承不同心等因素。众所周知,速度越高,离心力越大。而现代有许多旋转机械都处于高速运转状态,如发动机,汽轮机,离心机,电机转子及汽车轮子等。比拟罕见的误差是你运用间歇分割器的时分,所包装物的颗粒能否平均,所带动的机械能否呈现毛病,要一个个的扫除。即使存在很小的不平衡,在高速旋转时也会产生非常大的离心力。请看下例:一个重10吨,半径为0.5米的圆柱形转子,其表面存在100克的不平衡量,在工作转速为2000r﹨min时,根据方程式计算后会产生2000(N)的离心力。若速度再增加,离心力更大。因此,即使在重达几吨到几十吨的转子上存在几百克的不均匀质量分布,在高速旋转时也会产生很大的不平衡力。转子上不平衡离心力的存在,将会导致机器转子,轴承和安装基础等产生机械振动。在大多数情况下,机械振动是***的
分割器在齿轮传动下,机床分度工作台使用标准的旋转电机联接到直角齿轮箱上。齿轮啮合时齿面间会留有间隙,称为齿隙,即一个齿轮在不影响与它的啮合的齿轮的情况下可以承受的震动。当加速传动时齿隙会变大,减速传动时会减小。同时,为了保证机构在高速运转时,具有预期的运动精度,并能持久的保持这种精度,则不仅需要研究其运动学。凸轮分割器因此它对系统会产生不良作用,影响输出轴的精度。当工件进行精密加工时,传动系中的齿隙就会将其固有的性差的问题暴露出来。 由于取消了传动皮带和齿轮箱等部件,直接驱动的结构设计从根本上改变厂原有的旋转电机加丝杠结构,消除了机械传动带来的间隙、分度箱柔性及与之相关的系列问题,具有免维护、高刚度、无需润滑、***精度高、速度平稳、运行安静等优点,分割器大大提高了设备的生产率和可靠性。同时,由于装配紧凑、零部件少、安装和使用便捷,还能够帮助OEM厂商快速将产品推向市场。
版权所有©2025 产品网