PLA对PBAT改性
聚对苯二甲酸–己二酸–丁二酯(PBAT)是一种新型可生物降解共聚酯,目前,针对PBAT共混改性的研究多集中在利用淀粉以及塑化淀粉填充改性PBAT等方面。但加入塑化淀粉会较大程度降低PBAT材料的拉伸强度和模量。
聚乳酸(卷膜全降解塑料)则是另一种应用广泛的可生物降解聚合物树脂,和PBAT具有完全相反的力学性能,因此,利用共混法将两者制成共混物是性能互补的有效手段,且所得共混材料和制品具有完全的可生物降解性。
目前,利用柔性PBAT对卷膜全降解塑料基体进行增韧改性的研究报道较多,而利用高强度PLA对PBAT树脂进行增强改性的研究报道很少。
相关研究显示,加入PLA能够较好地提高PBAT的拉伸屈服强度,但其断裂伸长率却大幅度降低。这是由于两者的相容性不佳,导致相界面脱粘所致。
降解3D打印材料
、航天等***领域已经对卷膜全降解塑料的可降解与可回收属性形成刚需。可回收、可降解的3D打印材料在制造业的各细分领域中都是多多益善。如今,包装、服装、家居装饰等产业也已出现可回收或降解的3D打印产品。可以预见,这类产品的市场会持续扩大,因为环保永无止境。卷膜全降解塑料产品有利于解决传统的塑料包装材料造成的“白色”污染和减少对石油资源的依赖。
在成员众多的卷膜全降解塑料家族中,由植物淀粉制成的PLA(聚乳酸)颇具特色,因为它终能够降解为二氧化碳和水,具有环境友好属性。一提到可降解3D打印材料,人们往往就会想到它。
然而作为一项有望革新制造业生产方式的新兴技术,3D打印并不能蜻蜓点水式地仅在一两种原材料中展现其环保潜质,而应将环保上升为整个产业的共同目标,否则便不足以在未来实现长期发展。事实上,当些***领域就已经对卷膜全降解塑料的可降解与可回收属性形成了刚需。丙交酯开环聚合易于获得高分子量的聚乳酸类聚合物,但环状中间体丙交酯的制备使聚合物的合成路线冗长、成本高,影响了聚乳酸类生物降解材料的推广应用。
可降解塑料面临的挑战国内
1)成本较高,虽然近几年随着产能规模的扩大,价格已有下降,但平均价格仍是传统塑料的2 ~ 3倍(淀粉基塑料除外);2)生物降解塑料的降解需要一定的微生物环境,因此对其回收及回收后如何堆肥也是需要考虑的一个重要问题;3)卷膜全降解塑料的性能与传统石油基塑料相比还有差距,大部分性能不如石油基塑料(除PBS,PBTA);4)很多生物基降解塑料的原料来源是玉米、木薯等,需要考虑“吃”和“用”的平衡问题;(可参考1吨PLA要消耗2.5吨玉米,发展PLA真的糟蹋粮食吗?一文)总而言之,PLA的发展面临着扩大产能、乳酸的玉米为主原料来源的道德问题及其价格波动等诸多挑战;可卷膜全降解塑料减少了二氧化碳排放量如今,我们生产的塑料垃圾比人类历比以往任何时候都多。PBAT也面临着石油的非生物质资源来源问题、未来石油价格波动问题、应用场景较窄、以及降解产物风险评估等问题。这些问题需要学术界与产业界携手攻关、共同探索,找到解决以上问题的途径与方案。
可降级材料中淀粉基材料
淀粉作为一种天然高分子化合物其来源广泛品种繁多成本低廉。且能在各种自然环境下完全降解。终分解为CO2和H2O,不会对环境造成任何污染,因而淀粉基降解材料成为国内外研究开发的一类生物降解材料,它可以通过与其它高分子共混或者与单体共聚的方式得到淀粉基卷膜全降解塑料。在石油资源日益枯竭和***提倡低碳环保的大背景下,生物塑料在资源利用和可降解等方面比传统塑料具有的优势。
1973年Griffin获得淀粉表面改性填充材料的,到80年代,一些***以Grifn的为背景开发出淀粉填充型生物降解材料。填充型淀粉材料又称生物***性材料,其制造工艺是在通用材料中加入一定量的淀粉和其他少量添加剂然后加工成型,淀粉含量不超过30%。填充型淀粉材料技术成熟生产工艺简单,且对现有加工设备稍加改进即可生产,因此目前国内可降解淀粉材料产品大多为此类型。我们每年消耗超过1亿吨塑料,这意味着5:1的标准生产比例表明,这个行业每年产生5亿吨二氧化碳进入我们的大气层。
加拿***t.Lawrence淀粉公司研究生产了一种改性淀粉Ecostar母粒。可与聚乙烯、聚、聚、聚乙烯醇和聚氨酯共混制成生物降解材料,美国开发的淀粉基材料是将含水40% - 60%的胶化淀粉加到EAA (乙烯)中混合而制成农用地膜,美国Purde大学开发淀粉接枝聚采用阳离子聚合反应分子量和物性均能有效控制,其中含淀粉20%-30%的淀粉,接枝聚合物具有通常聚类似的性质。可以用做瓶子、薄膜等。我国太原工业大学刘书福等研究了马铃薯淀粉与聚的接枝共聚,江西科学院应用化学研究所用淀粉与接枝共聚制成淀粉基材料,吉林大学化学系和华东理工大学对改性淀粉降解膜进行了探索。光降解型塑料是指在紫外线的影响下聚合物链有次序地进行分解的材料。
版权所有©2025 产品网