1.对电容器补偿装备的危害:
为提高系统功率因数,通常需装设并联电容器组。在工频频率下,这些电容器的容抗比系统感抗大的多,不会产生谐振。但对高次谐波,系统感抗大大增加,,而容抗减小,就有可能产生并联或串联谐振。这种谐振会使谐波电流放大几倍至几十倍,对系统特别是对电容器的寿命有很大影响。
2.对电表的危害:
采用均方根值和平均值测量原理的电流表、电压表及电量变送器均会受到谐波影响,产生精度偏差,其中奇次谐波引起的偏差远大于偶次谐波,电压表误差大于电流表误差。采用有效值原理的测量仪表可以获得较宽的频率特性。同样,谐波对相位测量、功率因数测量仪表影响较大。
电工测量仪表通常是按工频正弦设计。其中常见的感应式电能表频率响应很差,记录三次谐波功率时约差20%记录五次谐波功率时相差可哒40%左右。有些用户配电系统中含有大量谐波源,可向电网反送谐波有功功率,可能造成实付电费高于它所消耗的基波有功功率的应付电费。而无谐波源的用户在接受含谐波电压的电源供电时,会由于负载产生的额外的谐波损耗而多付电费。
3.对弱电系统的危害:
1)各种装有微电子控制的装置的办公电器均会受到谐波影响,严重时可造成电子芯片烧毁。电视机、显示器易受高频谐波干扰,出现闪烁和异常色带。另外,间谐波电压能引起图象翻滚,对阴极射线管的图象产生周期性的放大和缩小。
2)各类以电源电压过零点为基准的计时器,在谐波电压含有量较高时,电压过零点增多,计时会出现正误差。
3)当建筑的通讯系统等弱电系统线路采用金属管、金属线槽敷设或采用屏蔽线缆时,谐波通过电磁感应耦合、静电感应偶合方式的干扰基本可以排除。但弱电设备的电源部分如交换机电源、楼控系统DDC现场电源等会受到零线上的谐波干扰,严重时可烧毁电源模块。部分超声波传感器等可能受到影响无法正常工作。
4)计算厂家一般规定其产品允许接受馈电电压的THDU为3~5%,电压峰值和有效值之比必须在1.41&plu***n;0.1范围内。严重的谐波电压畸变可导致计算机及其UPS工作失常。谐波会使计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误。
4.对气体放电灯具的危害:
气体放电灯具自带的补偿电容,在谐波电流含有率高时,会发热并减少寿命。
5.对用电设备的危害
谐波同样会干扰变频装置、软启动器等设备的控制系统,严重时可使可控硅装置不能正常运行。热磁型空气断路器脱扣值基本不受谐波电流的影响。但当系统中含有大量谐波电流时,电流过零点处的DI/DT比基波电流时增大很多,可能使端路器分断能力下降。同样情况下,使接触器触头烧蚀现象加重。采用电子式脱扣器的空气断路器,其测量用电子线路存在受谐波干扰的可能。由此可见,谐波治理对一般工业用户会带来很大的不必要的电能损耗。
6.对配电系统的危害:
对配电的影响主要表现在线路损耗增加,增加功率损耗。同时谐波电压产生的尖峰加速线缆绝缘的老化,引起浸渍绝缘的局部放电,温升增大,缩短线缆使用寿命。民用建筑常见的三次谐波在N线上的积累,极易造成N线的过载。由于大部分情况下,配电系统在N线上不设置保护装备,N线的超负荷运行,埋下了火灾隐患。
7.对变压器的危害;
谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点接地,而该侧电网中分布电容较大或者装有中性点接地的并联容器时,可能形成3次谐波谐振。其次是产生机械震动、噪声和谐波过电压。
8.对继电保护装置的危害:
继电保护装置采用电磁型和感应型继电器时,基本不受谐波影响。整流型和晶体管型继电器对谐波较为敏感,有可能引起误动作。目前在中压系统大量应用的组合式过流继电器多为晶体管型,其中有些产品设置涌流等功能,能够通过对变压器的投切造成的励磁电流中特定次数谐波进行检测,避免涌流造成的误动作,差动几电器、零序及负序继电器由于整定值小,易受谐波电流影响。
9.对电动机危害:
谐波电***生的谐波转矩对电动机的平局转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲震动的问题。谐波对旋转电动机的危害主要是产生附加的损耗和转矩。由于集肤效应、磁滞、涡流等随着频率的***而使在旋转点机的铁心和绕组中产生的附加损耗增加。
消除电力电子装置谐波污染的工作,可称之为当今技术应用的”绿色工程”。***甚至消除谐波,才能真正地实现节约电能、减少损耗,降低成本;提***率、稳定生产、优化质量。谐波治理工作是一项节能环保的有益的工作。并且,由于谐波的存在,设备电感与无功补偿用的电容器组发生并联谐振,及外系统感抗与无功补偿用的电容器发生串联谐振,使得谐波进一步放大,从而使得电压和电流畸变更加严重。电气线路的集肤效应,导致电缆、电线发热,绝缘材料加速老化。
版权所有©2024 产品网