光学薄膜的定义
由薄的分层介质构成的,通过界面传播光束一类光学介质材料,光学薄膜的应用始于20世纪30年代,光学薄膜已经广泛用于光学和光电子技术领域,制造各种光学仪器。制备条要求件高而精。
光学薄膜的定义是:涉及光在传播路径过程中,附着在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或偏振分离等各特殊形态的光。
光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是防伪技术,皆能被称之为光学薄膜技术应用之延伸。倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。
光学薄膜系指在光学元件或***基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变。故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性。
一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺。所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工。日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品。但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布。湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品。
光学镀膜的作用介绍
光学镀膜由薄膜层组合制作而成,它产生干扰效应来提高光学系统内的透射率或反射性能。光学镀膜的性能取决于层数、个别层的厚度和不同的层接口折射率。用于精密光学的常见镀膜类型:增透膜(AR)、高反射(镜)膜、分光镜膜和过滤光片膜。增透膜包括在高折射率的光学中并用于化光通量和降低鬼影。高反射膜的设计可在单个波长或范围广泛的整个波长以反射。分光镜膜用于将入射光分为已知的透射光和反射光输出。滤光片应用于大量的工业应用中,并以特定波长用于透射、反射、吸收或衰减光。爱特蒙特光学还可以提供各种定制镀膜满足任何应用程序需要。
光学镀膜经过精心设计用于特定的入射光角和特定的偏振光,例如S偏振光、P偏振光或随机偏振光等。如果镀膜设计的入射光角为0°,但使用时的入射光角为45°,则镀膜将不会以规定的透射率/反射规格执行。同样地,镀膜一般设计用于随机偏振光,因此在设计用于随机偏振光的镀膜上使用S偏振光或P偏振光将会再次产生无效的规格。
光学镀膜是由沉积电介质和金属材料制作而成,例如薄层中的Ta2O5和/或Al2O3,在应用中使用的光波长通常是四分之一波长光学厚度(QWOT)或半波光学厚度(HWOT)。这些薄膜由高折射率和低折射率层交替而成,从而诱发需要的干扰效应。请参阅图1有关宽带增透膜设计的样品说明。
真空镀膜机镀膜原理:
高电压电子枪将以上几种***汽化,均匀分布在镜片表面。
1.全表面单层镀膜(FC):所有接触空气的玻璃表面都镀了单层减反增透膜。如果在所有的空气介面上都镀上单层减反增透膜,会在一个波段上取得更高的透光率。为方便工艺,在全表面单层减反膜的设计中,某一片的二个面中心波长通常一致。
2.多层减反增透膜和宽带膜(MC):单层膜的剩余反射率仍显高,偏色现象比较严重。要进一步提高透光率,可用双层V形增透膜,用层镀膜控制镜片的反射率,第二层镀膜改善光透射率。对于单层氟化镁膜,光学玻璃的折射率ng是太低,可先镀一层厚度为λc2/4(λc2为光在镀膜中的波长)的折射率大于镜片折射率的一氧化硅膜(折射率为nc2),这时薄膜和基片的组合系统可以用一折射率为v=nc2^2/ng的假想基片来提高镜片的折射率,然后镀上一层λc1/4氟化镁膜层来减少反射率。但对于偏离λ的波长,不能等价也不能满足干涉相消的条件,故分光曲线呈V形,色彩仍不平衡。
要进一步消除彩斑幻象,平衡色彩可用双层或多层W形宽带减反增透膜,多层减反增透膜系还原真实色彩,并不是要求镜片在可见光(370nm―680nm)光谱范围内透过率一致。而是要求在蓝、绿、红光(370nm―480nm、500-550nm、580nm―680nm)三个通道通过的光线恰好可以合成标准的白光。这种膜系的反射率曲线在520nm-540nm区间形成一个0.8%左右的反射峰,在440nm和640nm处有二个反射谷,形状像W曲线,所以叫W形减反增透膜。这种膜系的反光为翠绿色所以也称减反绿膜。
版权所有©2025 产品网