




采用某一种结构的流动性试样,改变型砂的水分、煤粉含量、浇注温度、直浇道高度等因素中
的一个因素,角驰压瓦机,以判断该变动因素对充型能力的影响。各种测定合金流动性的试样都可用以测
定合金的充型能力。
流动性试样的类型很多,如螺旋形、球形、U形、楔形、竖琴形、真空试样 (即用真
空吸铸法)等。在生产和科学研究中应用多的是螺旋形试样,如图1?16所示,其优点是
灵敏度高、对比形象、可供金属液流动相当长的距离 (如1?5m),而铸型的轮廓尺寸并不太
大。缺点是金属流线弯曲,沿途阻力损失较大,流程越长,散热越多。

如果因铸件断面温度场较平坦 [图1?34(a)],或合金的结晶温度范围很宽 [图1?34
(b)],铸件凝固的某一段时间内,其凝固区域在某时刻贯穿整个铸件断面时,则在凝固区
域里既有已结晶的晶体也有未凝固的液体,这种情况为 “体积凝固方式”,900压瓦机,或称 “糊状凝固
方式”。
如果合金的结晶温度范围较窄 [图1?35(a)],840压瓦机,或者铸件断面的温度梯度较大 [图1?35
图1?35 “中间凝固方式”示意图
(b)],铸件断面上的凝固区域宽度介于前
二者之间时,则属于 “中间凝固方式”。
凝固区域的宽度可以根据凝固动态曲
线上的 “液相边界”与 “固相边界”之间
的纵向距离直接判断。因此,这个距离的
大小是划分凝固方式的一个准则。如果两
条曲线重合在一起———恒温下结晶的金属,
或者其间距很小,则趋向于逐层凝固方式。

熔化潜热使晶粒瓦解,液体原子具有更高
的能量,而金属的温度并不升高。从热力学角度,在恒压时,外界所供给的潜热,除使体积
膨胀做功外,还增加系统的内能,如式(1?1)所示。在等温等压下,熵值的增量如式(1?2)
所示。
系统熵值增加表示原子排列发生紊乱。因此,熔化过程就是金属从规则的原子排列突变
为紊乱的非晶态结构的过程。
2?液态金属的结构
(1)从物质熔化 (汽化)过程对液态金属结构的认识 如表1?1所示,东沙群岛压瓦机,金属物质熔化时
的体积一般仅增加3%~5%,即原子平均间距仅增加1%~1?5%,熔化时的熵值变化量远
小于加热膨胀过程。

版权所有©2025 产品网