




如果因铸件断面温度场较平坦 [图1?34(a)],成型压瓦机,或合金的结晶温度范围很宽 [图1?34
(b)],铸件凝固的某一段时间内,其凝固区域在某时刻贯穿整个铸件断面时,则在凝固区
域里既有已结晶的晶体也有未凝固的液体,这种情况为 “体积凝固方式”,或称 “糊状凝固
方式”。
如果合金的结晶温度范围较窄 [图1?35(a)],或者铸件断面的温度梯度较大 [图1?35
图1?35 “中间凝固方式”示意图
(b)],铸件断面上的凝固区域宽度介于前
二者之间时,则属于 “中间凝固方式”。
凝固区域的宽度可以根据凝固动态曲
线上的 “液相边界”与 “固相边界”之间
的纵向距离直接判断。因此,成型压瓦机厂家,这个距离的
大小是划分凝固方式的一个准则。如果两
条曲线重合在一起———恒温下结晶的金属,
或者其间距很小,成型压瓦机生产厂,则趋向于逐层凝固方式。

二、影响充型能力的因素及提高充型能力的措施
影响充型能力的因素是通过两个途径发生作用的:影响金属与铸型之间热交换条件,而
改变金属液的流动时间;影响金属液在铸型中的水力学条件,而改变金属液的流速。影响液
态金属充型能力的因素是很多的,为便于分析,将所有的因素归纳为如下四类:
1?金属性质方面的因素
这类因素是内因,决定了金属本身的流动能力———流动性。
(1)合金的化学成分 合金的化学成分决定了结晶温度范围,因此合金的流动性与其成
分之间存在着一定的规律性。在流动性曲线上,对应着纯金属、共晶成分和金属间化合物的
地方出现大值,而随结晶温度范围的增加,流动性下降,且在大结晶温度范围附近出现
小值 (如图1?18、图1?19所示)。

一、液态金属的结构
人们对液态金属结构的认识滞后于固体金属,这是因为它是以液体这样一个无序体系作
为研究对象。近年来,利用X射线、电子和中子衍射及同步辐射技术得到液态金属及合金
直接的结构信息,促进了液体金属物理研究的不断深入。通过两种方法可以研究金属的液态
结构。一种是间接方法,即通过固→液态、固→气态转变后一些物理性质的变化判断液态的
原子结合状况,另一种是较为直接的方法,即通过液态金属的X射线或中子线的结构分析
研究液态的原子排列情况。在了解液态金属的结构之前,有必要对金属晶体的原子结合、加
热膨胀及熔化过程加以阐述。

版权所有©2025 产品网