




表明液体的原子间距接近固体,在熔点附近其系统的混乱度只是稍大于
固体而远小于气体的混乱度。表1?2为一些金属的熔化潜热和汽化潜热。如果说汽化潜热
(固→气)是使原子间的结合键全部***所需的能量,则熔化潜热只有汽化潜热的3%~7%,
即固→液时,压瓦机公司,原子的结合键只***了百分之几。因此,异型压瓦机公司,可以认为液态和固态的结构是相似
的,金属的熔化并不是原子间结合键的全部***,液体金属内原子仍然具有一定的规律性,
特别是在金属过热度不太高 (一般高于熔点100~300℃)的条件下更是如此。需要指出的
是,在接近汽化点时,琉璃瓦压瓦机公司,液体与气体的结构往往难以分辨,说明此时液体的结构更接近于
气体。

三、铸件温度场的测定及动态凝固曲线
铸件温度场测定方法的示意图如图1?29所示。将一组热电偶的热端固定在型腔中 (如
铸型中)的不同位置,高空压瓦机公司,利用多点自动记录电子电位计 (或其他自动记录装置)作为温度测量
和记录装置,即可记录自金属液注入型腔起至任意时刻铸件断面上各测温点的温度?时间曲
52
线,如图1?30(a)所示。根据该曲线可绘制
出铸件断面上不同时刻的温度场 [图1?30
(b)]和铸件的凝固动态曲线 [图1?31(b)]。
铸件温度场的绘制方法是:以温度为纵
坐标,以离开铸件表面向中心的距离为横坐
标,将图1?30(a)中同一时刻各测温点的温
度值分别标注在图1?30(b)的相应点上,连
接各标注点即得到该时刻的温度场。以此类
推,则可绘制出各时刻铸件断面上的温度场。

① 钢球模型 假设液态金属是均质的、密度集中的、
列紊乱的原子堆积体。其中既无晶体区域,又无大到足
容纳另一原子的空穴。在构建液体结构几何模型的实验
,用无规则堆积的钢球灌以油漆,固化后统计单个球接
点的数目。根据统计结果可确定该结构的平均配位数,
液态结构的平均配位数。发现,在紊乱密集的球堆中存
高度致密区,其统计结构获得的偶分布函数g(r)与液体
的衍射实验结构很好吻合。钢球模型形象地描述了液体
程有序远程无序的特征,为奠定液体结构的统计几何基
做出了重要贡献。

版权所有©2025 产品网