




(2)充型压头 液态金属在流动方向上所受的压力越大,充型能力就越好。在生产中,压瓦机销售,
用增加金属液静压头的方法提高充型能力,也是经常采取的工艺措施。用其他方式外加压
力,如压铸、低压铸造、真空吸铸等,也都能提高金属液的充型能力。
(3)浇注系统的结构 浇注系统越复杂,流动阻力越大,在静压头相同的情况下,充型
能力就越差。
4?铸件结构方面的因素
衡量铸件结构特点的因素是铸件的折算厚度 (换算厚度,当量厚度、模数)和复杂程
度,它们决定了铸型型腔的结构特点。如果铸件的体积相同,在同样的浇注条件下,折算厚
度大的铸件。

可以看出,铸件的温度场随时间而变化,为不稳定温度场。铸件断面上的温度场
也称温度分布曲线。如果铸件均匀壁两侧的冷却条件相同,则任何时刻的温度分布曲线
对铸件壁厚的轴线是对称的。温度场的变化速率,琉璃瓦压瓦机销售,即为表征铸件冷却强度的温度梯度。
温度场能更直观地显示出凝固过程的情况。
图1?31所示是铸件的凝固动态曲线,840压瓦机销售,也是根据直接测量的温度?时间曲线绘制的:首先
图1?31(a)上给出合金的液相线和固相线温度,把二直线与温度?时间曲线相交的各点分
标注在图1?31(b)(x/R,τ)坐标系上,再将各点连接起来,即得凝固动态曲线。纵坐标
子x是铸件表面向中心方向的距离,分母R是铸件壁厚之半或圆柱体和球体的半径。因
固是从铸件壁两侧同时向中心进行,所以x/R=1表示已凝固至铸件中心。

2?流动性的测定
由于影响液态金属充型能力的因素很多 (后述),在工程应用及研究中,不能笼统地对
各种合金在不同的铸造条件下的充型能力进行比较。通常用相同实验条件下所测得的合金流
动性表示合金的充型能力。因此,可以认为合金的流动性是在确定条件下的充型能力。液态
金属的流动性是用浇注 “流动性试样”的方法衡量的。在实际中,是将试样的结构和铸型性
质固定不变,双层压瓦机销售,在相同的浇注条件下,例如在液相线以上相同的过热度或在同一的浇注温度
下,浇注各种合金的流动性试样,以试样的长度或以试样某处的厚薄程度表示该合金的流动
性。对于同一种合金,也可以用流动性试样研究各铸造因素对其充型能力的影响。

版权所有©2025 产品网