伺服马达操作不当会出现什么情况
在使用伺服马达时,在接通电源后,要仔细观察水泵的运转情况,出水应连续均匀,水泵无振动和噪音方可使用。伺服马达操作不当会出现什么情况?伺服马达操作不当时会引起烧坏。
为了确保水泵的正常运转,使用前还应对其检查一遍。
1、用检查水泵电机绕组是否断路。其绝缘情况可用于500伏兆欧表测量,绝缘电阻低于0.5兆欧时,水泵不能使用。
2、卸下过滤网,转动泵轴是否灵活,如不灵活,应调整后方可使用。
3、闸门***丝容量选择是否合适,不可用其它导线代替***丝。
4、接通电源,检查叶轮运转是否正常。
只要一个伺服马达控制器出问题,整台高速机不能动,整条生产线不能生产。这样就会对产品的质量有影响甚至也会让企业的效益受影响,所以要有伺服马达维修的应用对策。
关于伺服马达操作不当会出现什么情况就介绍到这了,如需了解更多,请关注深圳日弘忠信是松下伺服电机,深圳日弘忠信是松下伺服电机代理商,主营松下A6伺服电机、400w/700w松下伺服电机等各型号库存现货供应。
用脉冲方式控制深圳松下伺服电机的优点有哪些,具体如下:
1、信号抗干扰性能好。数字电路抗干扰性能是模拟电路难以比拟的。当然目前由于伺服驱动器和运动控制器的限制,用脉冲方式控制深圳松下伺服电机也有一些性能方面的弱点。
2、可靠性高,不易发生飞车事故。用模拟电压方式控制伺服电机时,如果出现接线接错或使用中元件损坏等问题时,有可能使控制电压升至正的较大值。这种情况是很***的。如果用脉冲作为控制信号就不会出现这种问题。
3、控制的快速性速度不高。
4、控制的灵活性大大下降。三、根据说明书标准安装、启动、制动电机,并伺服电机正常运行情况下,保证其工作对电源供应质量在容许范围内。这是因为伺服驱动器工作在位置方式下,位置环在伺服驱动器内部。这样系统的PID参数修改起来很不方便。当用户要求比较高的控制性能时实现起来会很困难。从控制的角度来看,这只是一种很低级的控制策略。如果控制程序不利用编码器反馈信号,事实上成了一种开环控制。如果利用反馈控制,整个系统存在两个位置环,控制器很难设计。
在实际中,常常不用反馈控制,但不定时的读取反馈进行参考。这样的一个开环系统,如果运动控制器和伺服驱动器之间的信号通道上产生干扰,系统是不能克服的。
伺服电机与变频电机如何区分
伺服电机的基本概念是准确、快速***。六、两通道振动***滤波器,***机械远端振动地球环境关注对应ROHS指令,采用无铅化焊锡。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确***。
下面我们就来看下伺服电机与变频电机的共同点与不同之处,便我们了解两者的区别在哪。
1、两者的共同点:
交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率, p极对数)
2、变频器:
简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。直流伺服电机噪音大的解决方法电磁噪声首要是由气隙磁场效果于定子铁芯的径向重量所发生的。
3、伺服:
驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更的控制技术和算法运算,在功能上也比传统的变频强大很多,主要的一点可以进行的位置控制。通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更的计算以及性能更优良的电子器件使之更优越于变频器。松下伺服电机目前共有松下伺服A系列、A4系列、A5系列、A52系列、NEW-E系列等产品,在国内市场占有率极高。
电机方面:伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。就是说不是变频器输出不了变化那么快的电源信号,而是电机本身就反应不了,所以在变频的内部算法设定时为了保护电机做了相应的过载设定。当然即使不设定变频器的输出能力还是有限的,有些性能优良的变频器就可以直接驱动伺服电机!!但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。!
4、交流电机:
交流电机一般分为同步和异步电机
1)交流同步电机:就是转子是由永磁材料构成,所以转动后,随着电机的定子旋转磁场的变化,转子也做响应频率的速度变化,而且转子速度=定子速度,所以称“同步”。
2)交流异步电机:转子由感应线圈和材料构成。转动后,定子产生旋转磁场,磁场切割定子的感应线圈,转子线圈产生感应电流,进而转子产生感应磁场,感应磁场追随定子旋转磁场的变化,但转子的磁场变化永远小于定子的变化,一旦等于就没有变化的磁场切割转子的感应线圈,转子线圈中也就没有了感应电流,转子磁场消失,转子失速又与定子产生速度差又重新获得感应电流。所以在交流异步电机里有个关键的参数是转差率就是转子与定子的速度差的比率。松下伺服电机一般选择小惯量的松下伺服电机以满足较高的动态响应。
3)对应交流同步和异步电机变频器就有相映的同步变频器和异步变频器,伺服电机也有交流同步伺服和交流异步伺服,当然变频器里交流异步变频常见,伺服则交流同步伺服常见。
五、应用不同
由于变频器和伺服在性能和功能上的不同,所以应用也不大相同:
1)在速度控制和力矩控制的场合要求不是很高的一般用变频器,也有在上位加位置反馈信号构成闭环用变频进行位置控制的,精度和响应都不高。现有些变频也接受脉冲序列信号控制速度的,但好象不能直接控制位置。
2)在有严格位置控制要求的场合中只能用伺服来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也用伺服控制,能用变频控制的运动的场合几乎都能用伺服取代,关键是两点:一是价格伺服远远高于变频,二是功率的原因:在之前变频大的能做到几百KW,甚至更高,伺服大就几十KW。现在现在伺服也能做到几百KW了。在使用伺服马达时,在接通电源后,要仔细观察水泵的运转情况,出水应连续均匀,水泵无振动和噪音方可使用。
以上就是伺服电机与变频电机的共同点与不同之处,便大家进行区分,现在市面***通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、快速***,只要满足这些就不会存在什么伺服变频之争。按应用分,我们把电机驱动器又分成通用电机驱动器和专用电机驱动器,通用电机驱动器不针对某种应用,在机床、纺织、包装、印刷等各种制造行业中得到广泛应用。
松下伺服马达无“自转”现象和快速响应的性能
为了使松下伺服马达具有比较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。下面我们一起来看下伺服马达速度和位置模式有什么区别呢?
伺服马达速度:
1.如果您对伺服马达的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
2.如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。
3.如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。
伺服马达位置模式:
就松下伺服马达的响应速度来看,转矩模式运算量小,伺服马达驱动器对控制信号的响应快。位置模式运算量大,驱动器对控制信号的响应慢。
1、位置控制:
位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于***装置。
2、转矩控制:
转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定伺服马达轴对外的输出转矩的大小,可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
伺服马达是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,从而达到使伺服马达准确***的目的。ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。
版权所有©2025 产品网