松下伺服电机A5II系列
引起伺服电机内部反馈编码器故障和损坏的原因,可能会有哪些?下面我们就看看都有哪些原因?
引起伺服电机内部反馈编码器故障和损坏的原因:
1、机械损伤
伺服反馈编码器故障中常见的就是各种机械损伤,包括由于机械振动、碰撞、冲击、磨损等因素造成的编码器内部元件结构(码盘、轴和轴承...等)的硬件损坏。
2、振动
过大的机械振动极有可能造成编码器码盘、轴和轴承的损伤。
3、冲击
和所有机电类产品一样,伺服电机和反馈编码器产品也会有额定的抗冲击加速度限值标称。过大的冲击力将可能导致伺服编码器码盘、轴、轴承、集成线路板和芯片的损坏、甚至整个反馈编码器的损毁和报废。
4、磨损
种机械损伤,就是伺服反馈编码器轴和轴承的磨损。虽然并不是很常见,但也需要引起一定的重视。
5、电气损坏
在各种伺服反馈编码器故障中,电气损坏也是经常发生的。
6、环境影响
这里所说的环境,首先当然还是指伺服电机所处的物理环境,包括:湿度、温度、滴液、油污、粉尘、腐蚀...等等。
不过,无论产品有哪些改进和发展,我还是要提醒大家不要忘记,严格按照产品的安装使用要求对伺服电机进行合理的应用操作。
松下伺服电机驱动器12脉冲整流是什么?
松下伺服电机驱动器12脉冲整流是什么?松下伺服电机驱动器12脉冲整流是对传统“交一直—交”变频器整流电路所作的改进。松下伺服电机有一个技术参数:空载启动频率,松下伺服电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。传统的三相桥式整流电路由于整流时的断续通断,必然会导致输入电流谐波的产生,谐波电流的幅值与谐波次数成反比,因此,对于三相桥式整流电路来说5次、7次谐波对电网的影响大,其谐波分量分别为20%与14.3%。
松下伺服电机驱动器12脉冲整流主回路采用了交流输入***、直流输出并联的两组整流桥,输入电压幅值相同相位相差30,它可直接通过△/Y变压得到,这样就可在直流输出侧得到电压叠加的松下伺服电机驱动器12个整流脉冲波形,故称松下伺服电机驱动器12脉冲整流。目前国内数控系统使用电机的现状,如果功能部件产业不形成规模化的发展,数控产品的可靠性、价格以及机床整机的质量都不会提高。
松下伺服电机速度响应是衡量交流调速系统动态快速性的新增技术指标。今天深圳日弘忠信的小编就来为大家做详细的介绍,具体有以下几点:1、本公司将尽力保证本产品的质量,由于预想外的噪音干扰、静电或输入电源、配线、零部件等出现异常情况,极可能导致设定外动作发生。速度响应是指负载惯量与伺服电机惯量相等的情况下,当速度指令以正弦波形式给定时,输出可以完全跟踪给定变化的正弦波指令频率值速度响应有时也称频率响应,分别用rad/s或Hz两种不同的单位表示,转换关系为1HZ=2rad/s。
速度响应是衡量交流调速系统的动态跟随性能的重要指标,也是不同形式的交流调速系统所存在的主要性能差距。数控机床松下伺服驱动器系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。当前通用伺服电机变频器、主轴伺服电机驱动器和伺服电机驱动器普遍可达到的速度响应比较性能比较。交流伺服电机的转子磁场(磁铁)不能调节,这是一种全范围恒转矩调速系统适合于恒转矩负载调速.如机床进给驱动等。
伺服电机变频器的输出特性无规律,在调速范围内,实际可保证的输出转矩只有额定转矩的50%左右。因此,在选用时都必须留有足够的余量。当用于恒转矩调速时,宜按照负载转矩的2倍来选择伺服电机与变频器。
日弘伺服电机电负载怎么样呢?
日弘伺服电机电负载怎么样呢?一般情况下,驱动信号脉冲多为24V串2K电阻。一般厂家都推荐电阻为1.8K~2K。目前的松下伺服电机内部大多采用高速DSP处理器,推进了各种***的运动控制算法在新型驱动器上的使用。通过测量,2K电阻的时候,脉冲电压只有2.2V。小编建议选用1.5K电阻,一般情况下,光耦可以承受24V的,特别是没有电阻的时候,直接接上去也能用。
伺服电机的振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当伺服电机工作在低速时,一般应采用阻尼技术来克服低频振动现象。
伺服电机具有共振***功能,伺服电机的控制精度由电机轴后端的旋转编码器保证。国内在基于异步电机交流伺服系统的研究比较晚,到目前为止还没有产品问世。由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。
在目前国内的数字控制系统中,伺服电机的应用十分广泛。为了适应数字控制的发展趋势,运动控制系统中大多采用伺服电机或全数字式交流伺服电机作为执行电动机。
松下伺服电机在维修过程中需要注意哪些问题?
经历了有液压到电气过程的松下伺服电机,在市场上得以稳步发展,在将近5年内伺服电机的前景将十分看好。由于松下伺服电机存在着机械结构复杂修理的时候应该注意那些事情呢?
(1)有些系统如传送装置,升降装置等要求松下伺服电机能尽快停车。而在故障,急停,电源断电时伺服器没有再生制动无法对电机减速。同时系统的机械惯量又较大,这时对动态制动器的选择要依据负载的轻重,电机的工作速度等。
(2)有些系统要维持机械装置的静止位置需松下伺服电机提供较大的输出转矩且停止的时间较长,如果使用伺服的自锁功能往往会造成电机过热或放大器过载。这种情况就要选择带电磁制动的电机。
(3)有的松下伺服电机有内置的再生制动单元,但当再生制动较频繁时可能引起直流母线电压过高,这时需另配再生制动电阻。再生制动电阻是否需要另配,配多大的再生制动电阻可参照相应样本的使用说明。松下伺服电机系统包括基于异步电机的交流伺服系统和基于同步电机的交流伺服系统。需要注意的是一般样本列表上的制动次数是电机在空载时的数据。实际选型中要先根据系统的负载惯量和样本上的电机惯量,算出惯量比。再以样本列表上的制动次数除以(惯量比 1)。这样得到的数据才是允许的制动次数。
版权所有©2024 产品网