伺服电机受速度限制吗?是什么原因导致伺服电机受速度限制的?
伺服电机的用途是给瓶装快速消费品套装彩印商标薄膜。送标和切标要求电机频繁启停,对伺服电机响应和刹车制动要求很高,在不震荡的前提下,尽量提高响应,增大位置环、速度环、电流环增益参数。设定伺服控制方式、齿轮比等参数,然后进行往复运动测试,如果***和速度精度达到要求,则调试完毕;如果未达到要求,则增大速度环路增益。
长期以来,在要求调速性能较高的场合,一直占据主导地位的是应用伺服电机的调速系统。直流电动机一些固有的缺点,如电刷和换向器易磨损,需经常维护。换向器换向时会产生火花,使伺服电机的速度受到限制,也使应用环境受到限制,而且直流电动机结构复杂,制造困难,所用钢铁材料消耗大,制造成本高。而交流伺服电机没有上述缺点,且转子惯量较直流电机小,松下伺服电机维修,使得动态响应更好。
现代大容量伺服电动机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,松下伺服电机如何转换方向,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。
自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,伺服电动机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,伺服电动机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流。
松下伺服马达的未来发展怎么样?据调查:19%正在使用30kW或甚至更大的松下伺服马达,15%表示在未来一年中亦将这样做;41%计划明年亦将使用。
在转速调查方面,48%表示转速3,松下伺服电机,000rpm或较低已满足要求,40%需要3,000~6,000rpm。3%用户表示要用超过10,000rpm.的伺服马达。
从这里我们可以看出,人们大多的需求集中的小功率伺服电机马达,但是他们正在使用的却是超过实际需求的功率,往往是“大马拉小车”,这种白白消耗掉的能源积累也是一个可观的数字,为实际需求配以合适的电机势在必行。
松下伺服马达的未来发展需要技术的提升,从提供动力的蒸汽机到普通电机再到现在的伺服电机马达,效率在提升的主要原因就是技术。
在《2012年工业节能与综合利用工作要点》中也指出,鼓励***电机技术的研发,并积极推进电机***再制造,即以机电产品全寿命周期设计和管理为指导,以废旧机电产品实现性能跨越式提升为目标,以优质、***、节能、节财、环保为准则,以***技术和产业化生产为手段这种的技术提升不仅是创新性的技术研发,也有创新性电机利用技术。
(1)与电机比较,伺服马达回转部分的惯性小,启动迅速、灵敏。因此,适用于高精度的自动控制系统。
(2)由于伺服马达的输出扭矩和油液压力成比例,故在系统中使用高压时,可以获得较高的输出扭矩,并不必过分增大其质量和体积。
(3)伺服马达不但可以正转,而且反转、变速、加速等均可以 藕自由变换,容易实现无级调速。在一般情况下,伺服马达的速比与可高达200,而电机的速比篱低于50。
由于松下伺服马达具有很大范围的速比,因此,对于提高机器的工作性能和生产效率具有十分重要的意义。
随着国内伺服电机及驱动器等硬件技术逐步成熟,以软形式存在于控制芯片中的伺服控制技术成为制约我国高性能交流伺服技术及产品发展的瓶颈。研究具有自主知识产权的高性能交流伺服控制技术,具有重要的理论意义和实用价值。伺服电机常用的绝缘材料有哪些?
一类是级绝缘:如经过浸渍处理的棉纱、丝、纸等有机纤维材料以及不同漆包线用的磁漆。
二类是B级绝缘:如云母、玻璃纤维及石棉等无机物用提高了耐热性的有机漆作为黏合物而制成的材料或其组合物。
三类是C级绝缘:包括无黏合剂的云母、石英、玻璃纤维等,松下伺服电机,用稳定性特别优良的硅有机树脂、聚酰浸渍漆等处理过的石、玻璃纤维织物或其他制成物。
四类是H级绝缘:如硅有机材料以及云母、玻璃纤维、石棉等物质用有机漆作为黏合物而制成的材料。
五类是F级绝缘:如云母、玻璃纤维、石棉等物质用有机化合物改性的合成树脂漆作为黏合物做成的材料或其组合物。
伺服电机采用高剩磁感应,高矫顽力的稀土类磁铁后,可比直流电动外形尺寸约小1/2质量减轻60﹪,转子惯量减到直流电动机的1/5与异步电机相比,采用永磁铁励磁,就能消除励磁损耗及有关的杂散损耗,所以效率高。
闭环伺服电机系统主要由比较环节、伺服电机放大器,进给伺服电动机、机械传动装置和直线位移丈量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用伺服电动机作为驱动部件。可以采用直接装置在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。
版权所有©2024 产品网